重庆市江北区巴蜀中学2023-2024学年八年级数学第一学期期末调研试题【含解析】
展开注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.若关于的不等式的整数解共有个,则的取值范围是( )
A.B.C.D.
2.下列说法正确的是( )
A.若ab=0,则点P(a,b)表示原点
B.点(1,﹣a2)一定在第四象限
C.已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴
D.已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)
3.已知有意义,则的取值范围是( )
A.B.C.D.且
4.微信已成为人们的重要交流平台,以下微信表情中,不是轴对称图形的是( )
A.B.C.D.
5.若,则点(x,y)在第( )象限.
A.四B.三C.二D.一
6.如图,等边三角形中,,有一动点从点出发,以每秒一个单位长度的速度沿着折线运动至点,若点的运动时间记作秒,的面积记作,则与的函数关系应满足如下图象中的( )
A.B.C.D.
7.已知一个等腰三角形的两边长分别是2和4,则该等腰三角形的周长为( )
A.8或10B.8C.10D.6或12
8.如图,△ABC是等边三角形,AD是BC边上的高,E是AC的中点,P是AD上的一个动点,当PC与PE的和最小时,∠CPE的度数是( )
A.30°B.45°C.60°D.90°
9.如图,在中, ,,是的中垂线,是的中垂线,已知的长为,则阴影部分的面积为( )
A.B.C.D.
10.如图,在平面直角坐标系中,直线l1:与直线l2:交于点A(,b),则关于x、y的方程组的解为( )
A.B.C.D.
二、填空题(每小题3分,共24分)
11.在中, ,若,则________________度
12.因式分解:(a+b)2﹣64=_____.
13.分解因式: .
14.如果,则______.
15.的相反数是______.
16.多项式因式分解为 _________
17.已知与成正比例,且时,则当时,的值为______.
18.如图,等腰△ABC中,AB=AC,∠BAC=120°,AE⊥AC,DE垂直平分AB于D,若DE=2,则EC=_____.
三、解答题(共66分)
19.(10分)已知,如图所示,在长方形中,,.
(1)建立适当的平面直角坐标系,直接写出顶点、、、的坐标;
(2)写出顶点关于直线对称的点的坐标.
20.(6分)在平面直角坐标中,四边形OCNM为矩形,如图1,M点坐标为(m,0),C点坐标为(0,n),已知m,n满足.
(1)求m,n的值;
(2)①如图1,P,Q分别为OM,MN上一点,若∠PCQ=45°,求证:PQ=OP+NQ;
②如图2,S,G,R,H分别为OC,OM,MN,NC上一点,SR,HG交于点D.若∠SDG=135°,,则RS=______;
(3)如图3,在矩形OABC中,OA=5,OC=3,点F在边BC上且OF=OA,连接AF,动点P在线段OF是(动点P与O,F不重合),动点Q在线段OA的延长线上,且AQ=FP,连接PQ交AF于点N,作PM⊥AF于M.试问:当P,Q在移动过程中,线段MN的长度是否发生变化?若不变求出线段MN的长度;若变化,请说明理由.
21.(6分)某市计划进行一项城市美化工程,已知乙队单独完成此项工程比甲队单独完成此项工程多用10天,且甲队单独施工30天和乙队单独施工45天的工作量相同.
(1)甲、乙两队单独完成此项工作各需多少天?
(2)已知甲队每天的施工费用为8000元,乙队每天的施工费用为6000元.为了缩短工期,指挥部决定该工程由甲、乙两队一起完成.则该工程施工费用是多少元?
22.(8分)阅读下列题目的解题过程:
已知为的三边,且满足,试判断的形状.
解:∵ ①
∴ ②
∴ ③
∴是直角三角形
问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号: ;
(2)该步正确的写法应是: ;
(3)本题正确的结论为: .
23.(8分)解不等式组,并把解集在数轴上表示出来.
24.(8分)求证:线段垂直乎分线上的点到线段两端的距离相等.
已知:
求证:
证明:
25.(10分)解下列分式方程:
(1)
(2).
26.(10分)先化简:,再在,和1三个数中选一个你喜欢的数代入求值.
参考答案
一、选择题(每小题3分,共30分)
1、D
【分析】首先确定不等式组的解集,先利用含m的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于m的不等式,从而求出m的范围.
【详解】解不等式,由①式得,,由②式得,即
故的取值范围是,故选D.
【点睛】
本题考查不等式组的整数解问题,利用数轴就能直观的理解题意,列出关于m的不等式组,再借助数轴做出正确的取舍.
2、C
【分析】直接利用坐标轴上点的坐标特点以及平行于坐标轴的直线上点的关系分别分析得出答案.
【详解】解:A、若ab=0,则点P(a,b)表示在坐标轴上,故此选项错误;
B、点(1,﹣a2)一定在第四象限或x轴上,故此选项错误;
C、已知点A(1,﹣3)与点B(1,3),则直线AB平行y轴,正确;
D、已知点A(1,﹣3),AB∥y轴,且AB=4,则B点的坐标为(1,1)或(1,﹣7),故此选项错误.
故选C.
【点睛】
本题考查了坐标与图形的性质,正确把握点的坐标特点是解题的关键
3、D
【分析】根据分式成立的条件和零指数幂成立的条件列不等式求解
【详解】解:由题意可知:且
解得:且
故选:D.
【点睛】
本题考查分式和零指数幂成立的条件,掌握分母不能为零,零指数幂的底数不能为零是解题关键.
4、C
【解析】根据轴对称的概念作答:如果一个图形沿一条直线对折,直线两旁的部分能互相重合,那么这个图形叫做轴对称图形.
【详解】A、是轴对称图形,故本选项不符合题意;
B、是轴对称图形,故本选项不符合题意;
C、不是轴对称图形,故本选项符合题意;
D、是轴对称图形,故本选项不符合题意.
故选:C.
【点睛】
本题主要考查了轴对称的概念,解题关键是掌握轴对称的概念并能找到对称轴.
5、D
【分析】利用非负数的性质列出方程组,求出方程组的解得到x与y的值,即可确定出点所在的象限.
【详解】解:∵,
∴,
解得:,
则点(1,1)在第一象限,
故选:D.
【点睛】
本题考查解二元一次方程组,以及非负数的性质,点的坐标,熟练掌握方程组的解法是解题的关键.
6、A
【分析】根据等边三角形的性质结合点的运动,当P运动到B,△APC的面积即为△ABC的面积,求出即可判定图象.
【详解】作CD⊥AB交AB于点D,如图所示:
由题意,得当点P从A运动到B时,运动了4秒,△APC面积逐渐增大,此时,
即当时,,
即可判定A选项正确,B、C、D选项均不符合题意;
当点P从B运动到C,△APC面积逐渐缩小,与从A运动到B时相对称,
故选:A.
【点睛】
此题主要考查根据动点问题确定函数图象,解题关键是找出等量关系.
7、C
【解析】试题分析:①4是腰长时,三角形的三边分别为4、4、4,∵4+4=4,∴不能组成三角形,
②4是底边时,三角形的三边分别为4、4、4,能组成三角形,周长=4+4+4=4,
综上所述,它的周长是4.故选C.
考点:4.等腰三角形的性质;4.三角形三边关系;4.分类讨论.
8、C
【分析】连接BE,则BE的长度即为PE与PC和的最小值.再利用等边三角形的性质可得∠PBC=∠PCB=30°,即可解决问题;
【详解】解:如连接BE,与AD交于点P,此时PE+PC最小,
∵△ABC是等边三角形,AD⊥BC,
∴PC=PB,
∴PE+PC=PB+PE=BE,
即BE就是PE+PC的最小值,
∵△ABC是等边三角形,
∴∠BCE=60°,
∵BA=BC,AE=EC,
∴BE⊥AC,
∴∠BEC=90°,
∴∠EBC=30°,
∵PB=PC,
∴∠PCB=∠PBC=30°,
∴∠CPE=∠PBC+∠PCB=60°,
故选:C.
【点睛】
本题考查的是最短线路问题及等边三角形的性质,熟知两点之间线段最短的知识是解答此题的关键.
9、B
【分析】根据线段垂直平分线的性质可得NB=NA,QA=QC,然后求出∠ANQ=30°,∠AQN=60°,进而得到∠NAQ=90°,然后根据含30度角的直角三角形的性质设AQ=x,NQ=2x,得到AN=,结合求出x的值,得到AQ、AN的值,进而利用三角形面积公式可得答案.
【详解】解:∵是的中垂线,是的中垂线,
∴NB=NA,QA=QC,
∴∠NBA=∠NAB=15°,∠QAC=∠QCA=30°,
∴∠ANQ=15°+15°=30°,∠AQN=30°+30°=60°,
∴∠NAQ=180°-30°-60°=90°,
设AQ=x,则NQ=2x,
∴AN=,
∴BC=NB+NQ+QC=AN+NQ+AQ=3x+=,
∴x=1,
∴AQ=1,AN=,
∴阴影部分的面积=,
故答案为:.
【点睛】
本题主要考查了线段垂直平分线的性质、三角形外角的性质、三角形内角和定理、含30度角的直角三角形的性质以及三角形面积公式等知识,灵活运用相关性质定理进行推理计算是解题关键.
10、C
【解析】试题解析:∵直线l1:y=x+3与直线l2:y=mx+n交于点A(-1,b),
∴当x=-1时,b=-1+3=2,
∴点A的坐标为(-1,2),
∴关于x、y的方程组的解是.
故选C.
【点睛】本题考查了一次函数与二元一次方程组的知识,解题的关键是了解方程组的解与函数图象的交点坐标的关系.
二、填空题(每小题3分,共24分)
11、1
【分析】根据等腰三角形的性质和三角形内角和定理即可求出答案.
【详解】∵
∴
∵
∴
故答案为:1.
【点睛】
本题主要考查等腰三角形的性质和三角形内角和定理,掌握等腰三角形的性质和三角形内角和定理是解题的关键.
12、(a+b﹣8)(a+b+8)
【分析】直接利用平方差公式分解因式得出答案.
【详解】解:(a+b)2﹣64=(a+b﹣8)(a+b+8).
故答案为(a+b﹣8)(a+b+8).
【点睛】
此题主要考查了平方差公式分解因式,正确应用公式是解题关键.
13、.
【解析】要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方公式或平方差公式,若是就考虑用公式法继续分解因式.因此,
先提取公因式后继续应用平方差公式分解即可:.
考点:提公因式法和应用公式法因式分解.
14、
【分析】把分式方程变为整式方程,然后即可得到答案.
【详解】解:∵,
∴,
∴,
∴,
∴;
故答案为:.
【点睛】
本题考查了解分式方程,熟练把分式方程转化为整式方程是解题的关键.
15、
【解析】直接根据相反数的定义进行解答即可.
【详解】解:由相反数的定义可知,的相反数是,即.
故答案为:.
【点睛】
本题考查的是相反数的定义,即只有符号不同的两个数叫互为相反数.
16、x(x-10)
【分析】利用平方差公式分解因式再化简得出即可.
【详解】解:
故答案为:
【点睛】
此题主要考查了平方差公式分解因式,熟练应用平方差公式是解题关键.
17、
【分析】先将正比例函数表达式设出来,然后用待定系数法求出表达式,再将y=5代入即可求出x的值.
【详解】∵与成正比例
∴设正比例函数为
∵时
∴
∴
当时,
解得
故答案为:.
【点睛】
本题主要考查待定系数法和求自变量的值,掌握待定系数法求出函数的表达式是解题的关键.
18、1
【分析】由DE垂直平分AB,可得AE=BE,由△ABC中,AB=AC,∠BAC=120°,可求得∠B=∠C=∠EAB=30°,继而求得AE的长,继而求得答案.
【详解】∵△ABC中,AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵DE垂直平分AB,
∴AE=BE,
∴∠EAB=∠B=30°,
∴AE=BE=2DE=2×2=4,
∴∠EAC=∠BAC-∠BAE=90°,
∴CE=2AE=1,
故答案为1.
【点睛】
此题考查了线段垂直平分线的性质以及含30°角的直角三角形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
三、解答题(共66分)
19、(1)见解析,;(2)
【分析】(1)以点A为坐标原点,AB所在的直线为x轴,AD所在的直线为y轴,建立平面直角坐标系,然后写出各点的坐标即可;
(2)根据关于x轴对称的点的横坐标不变,纵坐标互为相反数解答.
【详解】解:(1)建立平面直角坐标系如图,
;
(2)∵点C(4,3),
C和E关于x轴对称,则横坐标不变,纵坐标互为相反数,
∴.
【点睛】
本题考查了坐标与图形变化-对称,比较简单,确定出坐标原点的位置是解题的关键.
20、(1)m=1,n=1;(2)①证明见解析;②;(3)MN的长度不会发生变化,它的长度为.
【分析】(1)利用非负数的性质即可解决问题.
(2)①作辅助线,构建两个三角形全等,证明△COE≌△CNQ和△ECP≌△QCP,由PE=PQ=OE+OP,得出结论;
②作辅助线,构建平行四边形和全等三角形,可得▱CSRE和▱CFGH,则CE=SR,CF=GH,证明△CEN≌△CE′O和△E′CF≌△ECF,得EF=E′F,设EN=x,在Rt△MEF中,根据勾股定理列方程求出EN的长,再利用勾股定理求CE,则SR与CE相等,所以SR= ;
(3)在(1)的条件下,当P、Q在移动过程中线段MN的长度不会发生变化,求出MN的长即可;如图4,过P作PD∥OQ,证明△PDF是等腰三角形,由三线合一得:DM=FD,证明△PND≌△QNA,得DN=AD,则MN=AF,求出AF的长即可解决问题.
【详解】解:(1)∵ ,
又∵≥0,|1﹣m|≥0,
∴n﹣1=0,1﹣m=0,
∴m=1,n=1.
(2)①如图1中,在PO的延长线上取一点E,使NQ=OE,
∵CN=OM=OC=MN,∠COM=90°,
∴四边形OMNC是正方形,
∴CO=CN,
∵∠EOC=∠N=90°,
∴△COE≌△CNQ(SAS),
∴CQ=CE,∠ECO=∠QCN,
∵∠PCQ=41°,
∴∠QCN+∠OCP=90°﹣41°=41°,
∴∠ECP=∠ECO+∠OCP=41°,
∴∠ECP=∠PCQ,
∵CP=CP,
∴△ECP≌△QCP(SAS),
∴EP=PQ,
∵EP=EO+OP=NQ+OP,
∴PQ=OP+NQ.
②如图2中,过C作CE∥SR,在x轴负半轴上取一点E′,使OE′=EN,得▱CSRE,且△CEN≌△CE′O,则CE=SR,
过C作CF∥GH交OM于F,连接FE,得▱CFGH,则CF=GH=,
∵∠SDG=131°,
∴∠SDH=180°﹣131°=41°,
∴∠FCE=∠SDH=41°,
∴∠NCE+∠OCF=41°,
∵△CEN≌△CE′O,
∴∠E′CO=∠ECN,CE=CE′,
∴∠E′CF=∠E′CO+∠OCF=41°,
∴∠E′CF=∠FCE,
∵CF=CF,
∴△E′CF≌△ECF(SAS),
∴E′F=EF
在Rt△COF中,OC=1,FC=,
由勾股定理得:OF= =,
∴FM=1﹣=,
设EN=x,则EM=1﹣x,FE=E′F=x+,
则(x+)2=()2+(1﹣x)2,
解得:x=,
∴EN=,
由勾股定理得:CE= =,
∴SR=CE=.
故答案为.
(3)当P、Q在移动过程中线段MN的长度不会发生变化.
理由:如图3中,过P作PD∥OQ,交AF于D.
∵OF=OA,
∴∠OFA=∠OAF=∠PDF,
∴PF=PD,
∵PF=AQ,
∴PD=AQ,
∵PM⊥AF,
∴DM=FD,
∵PD∥OQ,
∴∠DPN=∠PQA,
∵∠PND=∠QNA,
∴△PND≌△QNA(AAS),
∴DN=AN,
∴DN=AD,
∴MN=DM+DN=DF+AD=AF,
∵OF=OA=1,OC=3,
∴CF=,
∴BF=BC﹣CF=1﹣4=1,
∴AF=,
∴MN=AF=,
∴当P、Q在移动过程中线段MN的长度不会发生变化,它的长度为.
【点睛】
本题是四边形与动点问题的综合题,考查了矩形、正方形、全等三角形等图形的性质与判定,灵活运用所学知识是解答本题的关键.
21、(1)甲单独完成需20天,乙单独完成需30天;(2)该工程施工费用是168000元.
【分析】(1)设甲单独完成需天,根据“甲队单独施工30天和乙队单独施工45天的工作量相同”列方程即可求出结论;
(2)设甲、乙合做完成需要天,利用“甲乙合做的工作量=1”列出方程,求出y,即可求出结论.
【详解】解:(1)设甲单独完成需天,依题意得
解得:=20
经检验=20是原方程的解
乙单独完成需20+10=30天
答:甲单独完成需20天,乙单独完成需30天.
(2)设甲、乙合做完成需要天,依题意得
解得:=12
总费用为:(8000+6000)×12=168000(元)
答:该工程施工费用是168000元.
【点睛】
此题考查的是分式方程的应用和一元一次方程的应用,掌握实际问题中的等量关系是解决此题的关键.
22、故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形.
【解析】(1)上述解题过程,从第三步出现错误,错误原因为在等式两边除以,没有考虑是否为0;
(2)正确的做法为:将等式右边的移项到方程左边,然后提取公因式将方程左边分解因式,根据两数相乘积为0,两因式中至少有一个数为0转化为两个等式;
(3)根据等腰三角形的判定,以及勾股定理的逆定理得出三角形为直角三角形或等腰三角形.
【详解】(1)上述解题过程,从第③步开始出现错误;
(2)正确的写法为:c (a−b)=(a+b)(a−b),
移项得:c (a−b)−(a+b)(a−b)=0,
因式分解得:(a−b)[c−(a+b)]=0,
则当a−b=0时,a=b;当a−b≠0时,a+b=c;
(3)△ABC是直角三角形或等腰三角形或等腰直角三角形。
故答案为:(1)③;(2) 当a−b=0时,a=b;当a−b≠0时,a+b=c;(3)△ABC是直角三角形或等腰三角形或等腰直角三角形
【点睛】
此题考查勾股定理的逆定理,因式分解的应用,解题关键在于掌握运算法则.
23、-1≤x﹤,数轴表示见解析
【分析】先分别解出每个不等式的解集,再把各个解集表示在数轴上,取公共部分即为不等式组的解集.
【详解】解:对于不等式组
由①得:x≥-1,
由②得:x﹤,
所以原不等式组的解是:-1≤x﹤.
【点睛】
本题考查了解一元一次不等式组、数轴的应用,能正确解出不等式的解集且表示在数轴上是解答的关键.
24、详见解析
【分析】根据命题写出“已知”、“求证”,再证明△AMN≌△BMN(SAS)即可.
【详解】解:已知:如图,线段AB的中点为M,过点M作MN⊥AB于点M,其中N为直线MN上任意不同于M的一点,连接AN,BN.
求证:AN=BN.
证明:∵MN⊥AB,
∴∠NMA=∠NMB=90°,
∵AB的中点为M,
∴AM=BM,
又∵MN=MN,
∴△AMN≌△BMN(SAS),
∴AN=BN,
命题得证.
【点睛】
本题考查了命题的证明,涉及垂直平分线性质的证明,三角形全等的判定,解题的关键是根据命题写出“已知”、“求证”,并找出全等三角形.
25、(1)无解;(2)
【分析】(1)方程去分母转化为整式方程,求解即可,经检验即可得到分式方程的解;
(2)方程去分母转化为整式方程,求解即可,经检验即可得到分式方程的解.
【详解】解:(1)去分母得:,
解得:,
经检验是增根,分式方程无解;
(2)去分母得:,
去括号得:,
移项合并得:,
解得:,
经检验是分式方程的解.
【点睛】
本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.
26、,时,原式=.
【分析】先计算括号内,再将除法化为乘法后约分化简,根据分式有意义分母不能为0,,所以将代入计算即可.
【详解】解:原式=
=
=,
∵分式有意义,,即,
∴当时,
原式=.
【点睛】
本题考查分式的化简求值.注意代值时,要代入整个过程出现的分母都不为0的值.
重庆市巴蜀中学2023-2024学年数学八年级第一学期期末调研试题【含解析】: 这是一份重庆市巴蜀中学2023-2024学年数学八年级第一学期期末调研试题【含解析】,共19页。试卷主要包含了关于x的方程无解,则m的值为等内容,欢迎下载使用。
重庆市巴蜀中学2023-2024学年八年级数学第一学期期末教学质量检测模拟试题【含解析】: 这是一份重庆市巴蜀中学2023-2024学年八年级数学第一学期期末教学质量检测模拟试题【含解析】,共20页。试卷主要包含了考生必须保证答题卡的整洁,下列运算正确的是,下列各式不成立的是等内容,欢迎下载使用。
重庆市江北区巴蜀中学2023-2024学年数学九年级第一学期期末检测模拟试题含答案: 这是一份重庆市江北区巴蜀中学2023-2024学年数学九年级第一学期期末检测模拟试题含答案,共7页。试卷主要包含了方程x,下列事件中,是必然事件的是,如图所示的工件,其俯视图是等内容,欢迎下载使用。