辽宁省盘锦市双台子区一中学2023年数学八上期末统考模拟试题【含解析】
展开注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.在一次数学课上,张老师出示了一道题的已知条件:如图四边形ABCD中,AD=CD,AB=CB,要求同学们写出正确结论.小明思考后,写出了四个结论如下:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=AC•BD;④线段BD,AC互相平分,其中小明写出的结论中正确的有( )个
A.1B.2
C.3D.4
2.在下列长度的四根木棒中,能与,长的两根木棒钉成一个三角形的是( )
A.B.C.D.
3.下列计算正确的是( )
A.m3•m2•m=m5B.(m4)3=m7C.(﹣2m)2=4m2D.m0=0
4.的立方根是( )
A.-1B.0C.1D.±1
5.对于命题“已知:a∥b,b∥c,求证:a∥c”.如果用反证法,应先假设( )
A.a不平行bB.b不平行cC.a⊥cD.a不平行c
6.如图,在四边形ABCD中,∠A=90°,AD∥BC,AB=4,点P是线段AD上的动点,连接BP,CP,若△BPC周长的最小值为16,则BC的长为( )
A.5B.6C.8D.10
7.已知直线y=-2x+3和直线y=kx - 5平行,则k的值为( )
A.2B.-2C.3D.无法确定
8.下列四个图形中轴对称图形的个数是( )
A.1B.2C.3D.4
9.一辆货车从甲地匀速驶往乙地用了2.7h,到达后用了0.5h卸货,随即匀速返回,已知货车返回的速度是它从甲地驶往乙地速度的1.5倍,货车离甲地的距离y(km)关于时间x(h)的函数图象如图所示,则a等于( )
A.4.7B.5.0C.5.4D.5.8
10.已知,那么=( )
A.6B.7C.9D.10
二、填空题(每小题3分,共24分)
11.已知一组数据x1,x2,x3,x4,x5的平均数是2,方差是1,则数据3x1-2,3x2-2,3x3-2,3x4-2,3x5-2的方差是______.
12.如图,在平面直角坐标系xOy中,A(2,1)、B(4,1)、C(1,3).若△ABC与△ABD全等,则点D坐标为_____.
13.已知,,则的值为_________.
14.分解因式:m2+4m=_____.
15.若是方程的一个解,则______.
16.如图,点P、M、N分别在等边△ABC的各边上,且MP⊥AB于点P,MN⊥BC于点M,PV⊥AC于点N,若AB=12cm,求CM的长为______cm.
17.已知,,则__________
18.如图,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于D,DE⊥AB于点E,且AB=6cm,则△DEB的周长是___;
三、解答题(共66分)
19.(10分)如图,△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,∠BAD=45°,AD与BE交于点F,连接CF.
(1)求证:BF=2AE;
(2)若CD=,求AD的长.
20.(6分)如图:已知直线经过点,.
(1)求直线的解析式;
(2)若直线与直线相交于点,求点的坐标;
(3)根据图象,直接写出关于的不等式的解集.
21.(6分)先化简,再求值:,其中x=-3.
22.(8分)学生在素质教育基地进行社会实践活动,帮助农民伯伯采摘了黄瓜和茄子共40kg,了解到这些蔬菜的种植成本共42元,还了解到如下信息:黄瓜的种植成本是1元/kg,售价为1.5元/kg;茄子的种植成本是1.2元/kg,售价是2元/kg.
(1)请问采摘的黄瓜和茄子各多少千克?
(2)这些采摘的黄瓜和茄子可赚多少元?
23.(8分)△ABC在平面直角坐标系中的位置如图所示.
(1)画出△ABC关于y 轴对称的△A1B1C1,并写出A1、B1、C1的坐标.
(2)将△ABC向右平移6个单位,画出平移后的△A2B2C2;
(3)观察△A1B1C1和△A2B2C2,它们是否关于某直线对称?若是,请在图上画出这条对称轴.
24.(8分)定义:在平面直角坐标系中,对于任意两点,,若点满足,那么称点是点,的融合点.例如:,,当点满足,时,则点是点,的融合点.
(1)已知点,,,请说明其中一个点是另外两个点的融合点.
(2)如图,点,点是直线上任意一点,点是点,的融合点.
①试确定与的关系式;
②在给定的坐标系中,画出①中的函数图象;
③若直线交轴于点.当为直角三角形时,直接写出点的坐标.
25.(10分)解分式方程:.
26.(10分)如图,Rt△ABC的顶点都在正方形网格的格点上,且直角顶点A的坐标是(﹣2,3),请根据条件建立直角坐标系,并写出点B,C的坐标.
参考答案
一、选择题(每小题3分,共30分)
1、C
【分析】根据全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式逐一判断即可.
【详解】解:在△ABD和△CBD中
∴△ABD≌△CBD,故①正确;
∵AD=CD,AB=CB,
∴点D和点B都在AC的垂直平分线上
∴BD垂直平分AC
∴AC⊥BD,故②正确;
∴S四边形ABCD=S△DAC+S△BAC=AC·DO+AC·BO=AC·(DO+BO)=AC•BD,故③正确;
无法证明AD=AB
∴AC不一定垂直平分BD,故④错误.
综上:正确的有3个
故选C.
【点睛】
此题考查的是全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式,掌握全等三角形的判定定理、垂直平分线的判定及定义和三角形的面积公式是解决此题的关键.
2、B
【分析】首先设第三根木棒长为xcm,根据三角形的三边关系定理可得9−4<x<9+4,计算出x的取值范围,然后可确定答案.
【详解】设第三根木棒长为xcm,由题意得:
9−4<x<9+4,
5<x<13,
故选B.
【点睛】
此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边.三角形的两边差小于第三边.
3、C
【分析】根据幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,逐项判断即可.
【详解】解:∵m3•m2•m=m6,
∴选项A不符合题意;
∵(m4)3=m12,
∴选项B不符合题意;
∵(﹣2m)2=4m2,
∴选项C符合题意;
∵m0=1,
∴选项D不符合题意.
故选:C.
【点睛】
本题考查了幂的乘方与积的乘方,同底数幂的乘法的运算方法,以及零指数幂的运算方法,掌握运算法则是解题关键.
4、C
【解析】∵=1,
∴的立方根是=1,
故选C.
【点睛】
此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.
5、D
【分析】用反证法进行证明;先假设原命题不成立,本题中应该先假设a不平行c,由此即可得答案.
【详解】直线a,c的位置关系有平行和不平行两种,因而a∥c的反面是a与c不平行,
因此用反证法证明“a∥c”时,应先假设a与c不平行,
故选D.
【点睛】
本题结合直线的位置关系考查反证法,解此题关键要懂得反证法的意义及步骤.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.
6、B
【分析】作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,设BC=x,则CP+BP=16﹣x=CE,依据Rt△BCE中,EB2+BC2=CE2,即可得到82+x2=(16﹣x)2,进而得出BC的长.
【详解】解:如图所示,作点B关于AD的对称点E,连接CE交AD于P,则AE=AB=4,EP=BP,
设BC=x,则CP+BP=16﹣x=CE,
∵∠BAD=90°,AD∥BC,
∴∠ABC=90°,
∴Rt△BCE中,EB2+BC2=CE2,
∴82+x2=(16﹣x)2,
解得x=6,
∴BC=6,
故选B.
【点睛】
本题考查勾股定理的应用和三角形的周长,解题的关键是掌握勾股定理的应用和三角形的周长的计算.
7、B
【分析】根据两直线平行,k相等即可得出答案.
【详解】∵直线y=-2x+3和直线y=kx - 5平行
故选:B.
【点睛】
本题主要考查两直线平行,掌握两直线平行时,k相等是解题的关键.
8、C
【解析】根据轴对称图形的概念求解.
【详解】第1,2,3个图形为轴对称图形,共3个.
故选:C.
【点睛】
本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.
9、B
【分析】先根据路程、速度和时间的关系题意可得甲地到乙地的速度和从乙地到甲地的时间,再由货车返回的速度是它从甲地驶往乙地的速度的1.5倍,列出方程组求得从乙地到甲地的时间t,进而求得a的值.
【详解】解:设甲乙两地的路程为s,从甲地到乙地的速度为v,从乙地到甲地的时间为t,
则
解得,t=1.8
∴a=3.2+1.8=5(小时),
故选B.
【点睛】
本题考查了一次函数的图像的应用、方程组的应用,根据一次函数图像以及路程、速度和时间的关系列出方程组是解答本题的关键.
10、B
【分析】已知等式左边通分并利用同分母分式的加法法则计算,整理后代入原式计算即可求出值.
【详解】解:∵,
∴=2,即a+b=2ab,
则原式== =7,
故选:B.
【点睛】
本题考查了分式加法的运算法则,整体代换思想的应用,掌握整体代换思想是解题的关键.
二、填空题(每小题3分,共24分)
11、1
【分析】先求出数据的平均数,再根据平均数公式与方差公式即可求解.
【详解】解:∵数据x1,x2,x3,x4,x5的平均数是2,
∴x1+x2+x3+x4+x5=2×5=10,
∴,
∵数据x1,x2,x3,x4,x5的方差是1,
∴[(x1-2)2+(x2-2)2+(x3-2)2+(x4-2)2+(x5-2)2]=1,
∴[(3x1-2-4)2+(3x2-2-4)2+(3x3-2-4)2+(3x4-2-4)2+(3x5-2-4)2]
=[1(x1-2)2+1(x2-2)2+1(x3-2)2+1(x4-2)2+1(x5-2)2]=1×1=1,
故答案为:1.
【点睛】
本题考查了平均数的计算公式和方差的定义,熟练运用公式是本题的关键.
12、(1,﹣1),(5,3)或(5,﹣1).
【解析】试题分析:首先画出平面直角坐标系,然后根据三角形全等的性质进行求解.
考点:三角形全等的应用.
13、
【分析】先把二次根式进行化简,然后把,,代入计算,即可得到答案.
【详解】解:
=,
∵,,
∴原式=;
故答案为:.
【点睛】
本题考查了二次根式的混合运算,以及二次根式的化简求值,解题的关键是熟练掌握二次根式的混合运算的运算法则进行解题.
14、m(m+4)
【解析】直接提取公式因进行因式分解即可
【详解】m2+4m=m(m+4).
故答案为:m(m+4).
【点睛】
本题考查提取公因式方法进行因式分解,找到公因式是解题关键
15、1
【解析】把代入方程,即可解答.
【详解】解:把代入方程,得:,
解得:a=1.
故答案为:1.
【点睛】
本题考查了二元一次方程的解,解决本题的关键是利用代入法解答即可.
16、4
【分析】根据等边三角形的性质得出∠A=∠B=∠C,进而得出∠MPB=∠NMC=∠PNA=90°,根据平角的义即可得出∠NPM=∠PMN=∠MNP,即可证△PMN是等边三角形:根据全等三角形的性质得到PA=BM=CN,PB=MC=AN,从而求得MC+NC=AC=12cm,再根据直角三角形30°角所对的直角边等于斜边的一半得出2MC=NC,即司得MC的长.
【详解】∵△ABC是等边三角形,∴∠A=∠B=∠C.
∵MP⊥AB,MN⊥BC,PN⊥AC,∴∠MPB=∠NMC=∠PNA=90°,
∴∠PMB=∠MNC=∠APN,∠NPM=∠PMN=∠MNP,
∴△PMN是等边三角形∴PN=PM=MN,∴△PBM≌△MCN≌△NAP(AAS),
∴PA=BM=CN,PB=MC=AN,MC+NC=AC=12cm,
∵∠C=60°,∴∠MNC=30°,
∴NC=2CM,∴MC+NC=3CM=12cm,∴CM=4cm.
故答案为:4cm
【点睛】
本题考查了等边三角形的判定和性质,平角的意义,三角形全等的性质等,得出∠NPM=∠PMN=∠MNP是本题的关键.
17、5
【分析】由题意根据同底数幂的除法,进行分析计算即可.
【详解】解:∵,,
∴.
故答案为:5.
【点睛】
本题考查同底数幂的除法,熟练掌握同底数幂的除法法则即同底数幂相除指数相减是解题的关键.
18、6cm
【分析】先利用“角角边”证明△ACD和△AED全等,根据全等三角形对应边相等可得AC=AE,CD=DE,然后求出BD+DE=AE,进而可得△DEB的周长.
【详解】解:∵DE⊥AB,
∴∠C=∠AED=90°,
∵AD平分∠CAB,
∴∠CAD=∠EAD,
在△ACD和△AED中,
∴△ACD≌△AED(AAS),
∴AC=AE,CD=DE,
∴BD+DE=BD+CD=BC=AC=AE,
BD+DE+BE=AE+BE=AB=6,
所以,△DEB的周长为6cm.
故答案为:6cm.
【点睛】
本题考查了角平分线上的点到角的两边的距离相等的性质,等腰直角三角形的性质,熟记性质并准确识图是解题的关键.
三、解答题(共66分)
19、(1)见解析 (1)1+
【解析】试题分析:(1)先判定出△ABD是等腰直角三角形,根据等腰直角三角形的性质可得AD=BD,再根据同角的余角相等求出∠CAD=∠CBE,然后利用“角边角”证明△ADC和△BDF全等,根据全等三角形对应边相等可得BF=AC,再根据等腰三角形三线合一的性质可得AC=1AF,从而得证.
(1)根据全等三角形对应边相等可得DF=CD,然后利用勾股定理列式求出CF,再根据线段垂直平分线上的点到线段两端点的距离相等可得AF=CF,然后根据AD=AF+DF代入数据即可得解.
解:(1)证明:∵AD⊥BC,∠BAD=45°,∴△ABD是等腰直角三角形.∴AD=BD.
∵BE⊥AC,AD⊥BC,∴∠CAD+∠ACD=90°,∠CBE+∠ACD=90°.∴∠CAD=∠CBE.
在△ADC和△BDF中,∠CAD=∠CBF,AD=BD,∠ADC=∠BDF=90°,
∴△ADC≌△BDF(ASA).∴BF=AC.
∵AB=BC,BE⊥AC,∴AC=1AE.∴BF=1AE.
(1)∵△ADC≌△BDF,∴DF=CD=.
在Rt△CDF中,.
∵BE⊥AC,AE=EC,∴AF=CF=1.
∴AD=AF+DF=1+.
20、(1);(2)点C的坐标为;(3)
【分析】(1)将A、B坐标代入解析式中计算解答即可;
(2)将两直线方程联立求方程组的解即可;(3)根据图像找出y>0,且直线高于直线部分的x值即可.
【详解】解:(1)因为直线经过点,
所以将其代入解析式中有,解得,
所以直线的解析式为;
(2)因为直线与直线相交于点
所以有,解得
所以点C的坐标为;
(3)根据图像可知两直线交点C的右侧直线高于直线且大于0,此时x的取值范围是大于3并且小于5,所以不等式的解集是.
【点睛】
本题考查的是一次函数综合问题,能够充分调动所学知识是解题的关键.
21、
【分析】先根据分式的混合运算法则化简,然后代入化简即可.
【详解】原式=•
=﹣
当x=﹣3时,原式=﹣.
【点睛】
本题考查了分式的混合运算,解题的关键是记住分式的混合运算,先乘方,再乘除,然后加减,有括号的先算括号里面的.
22、(1)黄瓜和茄子各30千克、10千克;(2)23元
【分析】(1)设当天采摘黄瓜x千克,茄子y千克,根据采摘了黄瓜和茄子共40kg,这些蔬菜的种植成本共42元,列出方程,求出x的值,即可求出答案;
(2)根据黄瓜和茄子的斤数,再求出每斤黄瓜和茄子赚的钱数,即可求出总的赚的钱数.
【详解】(1)设采摘黄瓜x千克,茄子y千克.根据题意,得,
解得,
答:采摘的黄瓜和茄子各30千克、10千克;
(2)30×(1.5-1)+10×(2-1.2)=23(元).答:这些采摘的黄瓜和茄子可赚23元.
【点睛】
本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.
23、(1)图详见解析,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);(2)详见解析;(3)△A1B1C1和△A2B2C2关于直线x=3对称.
【分析】(1)利用关于y轴对称的点的坐标特征写出A1、B1、C1的坐标,然后描点即可得到△A1B1C1;
(2)利用点利用的坐标规律写出A2、B2、C2的坐标,然后描点即可得到△A2B2C2;
(3)利用对称轴的对应可判断△A1B1C1和△A2B2C2关于直线x=3对称.
【详解】解:(1)如图,△A1B1C1为所作,A1、B1、C1的坐标分别为(0,4)、(2,2),(1,1);
(2)如图,△A2B2C2为所作;
(3)△A1B1C1和△A2B2C2关于直线x=3对称,如图.
【点睛】
本题考查轴画轴对称图形,关键在于熟记轴对称的基础知识,理解题意.
24、(1)点C是点A、B的融合点;(2)①;②见详解;③点E的坐标为:(2,9)或(8,21)
【分析】(1)根据融合点的定义,,即可求解;
(2)①由题意得:分别得到x与t、y与t的关系,即可求解;
②利用①的函数关系式解答;
③分∠DTH=90°、∠TDH=90°、∠HTD=90°三种情况,分别求解即可.
【详解】解:(1)x=,y=,
故点C是点A、B的融合点;
(2)①由题意得:x=,y=,则,
则;
②令x=0,y=;令y=0,x=,图象如下:
③当∠THD=90°时,
∵点E(t,2t+5),点T(t,2t−1),点D(4,0),且点T(x,y)是点D,E的融合点.
∴t=(t+4),
∴t=2,
∴点E(2,9);
当∠TDH=90°时,
∵点E(t,2t+5),点T(4,7),点D(4,0),且点T(x,y)是点D,E的融合点.
∴4=(4+t)
∴t=8,
∴点E(8,21);
当∠HTD=90°时,
由于EH与x轴不平行,故∠HTD不可能为90°;
故点E的坐标为:(2,9)或(8,21).
【点睛】
本题是一次函数综合运用题,涉及到直角三角形的运用,此类新定义题目,通常按照题设顺序,逐次求解.
25、x=3
【解析】试题分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.
试题解析:解:去分母得:3+x2﹣x=x2,解得:x=3,经检验x=3是分式方程的解.
点睛:此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.
26、直角坐标系见解析;点B的坐标为(﹣2,0),C点坐标为(2,3)
【分析】根据点A的坐标确定出直角坐标系,再根据坐标系得出点B,C的坐标.
【详解】解:如图所示:
,
点B的坐标为(﹣2,0),点C的坐标为(2,3).
【点睛】
此题考查坐标与图形的性质,关键是根据题意画出直角坐标系.
辽宁省盘锦双台子区六校联考2023-2024学年数学八上期末统考模拟试题【含解析】: 这是一份辽宁省盘锦双台子区六校联考2023-2024学年数学八上期末统考模拟试题【含解析】,共16页。
2023-2024学年辽宁省盘锦市双台子区实验中学数学八年级第一学期期末联考模拟试题含答案: 这是一份2023-2024学年辽宁省盘锦市双台子区实验中学数学八年级第一学期期末联考模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔,多项式分解因式的结果是,下列说法正确的是等内容,欢迎下载使用。
辽宁省盘锦市双台子区第一中学2023-2024学年八上数学期末质量跟踪监视试题含答案: 这是一份辽宁省盘锦市双台子区第一中学2023-2024学年八上数学期末质量跟踪监视试题含答案,共7页。试卷主要包含了角平分线的作法等内容,欢迎下载使用。