辽宁省鞍山市台安县2023-2024学年数学八上期末监测模拟试题【含解析】
展开注意事项
1.考试结束后,请将本试卷和答题卡一并交回.
2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.
3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.
4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.
5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.
一、选择题(每题4分,共48分)
1.如图,,的平分线与的平分线相交于点,作于点,若,则点到与的距离之和为( ).
A.B.C.D.
2.如图,在△ABC与△DEF中,给出以下六个条件:
(1)AB=DE;(2)BC=EF;(3)AC=DF;(4)∠A=∠D;(5)∠B=∠E;(6)∠C=∠F,
以其中三个作为已知条件,不能判断△ABC与△DEF全等的是( )
A.(1)(5)(2)B.(1)(2)(3)C.(2)(3)(4)D.(4)(6)(1)
3.等腰三角形的两边长分别为4cm和8cm,则它的周长为( )
A.16cmB.17cmC.20cmD.16cm或20cm
4.下列各数中,无理数的是( )
A.0B.1.01001C.πD.
5.下列满足条件的三角形中,不是直角三角形的是( )
A.三内角之比为1:2:3B.三内角之比为3:4:5
C.三边之比为3:4:5D.三边之比为5:12:13
6.如图,已知点的坐标为,点的坐标为,点在直线上运动,当最小时,点的坐标为( )
A.B.C.D.
7.已知数据,,的平均数为,数据,,的平均数为,则数据,,的平均数为( ).
A.B.C.D.
8.以下列各组线段为边作三角形,不能构成直角三角形的是( )
A.3,5,6B.3,4,5C.5,12,13D.9,40,41
9.等腰三角形的一个角是80°,则它的底角是( )
A.50°B.80°C.50°或80°D.20°或80°
10.下列各式是最简分式的是( )
A.B.
C.D.
11.要围成一个矩形菜园,菜园的一边利用足够长的墙,用篱笆围成的另外三边总长应恰好为24米,要围成的菜园是如图所示的矩形ABCD,设BC的边长为x米,AB边的长为y米,则y与x之间的函数关系式是( )
A.y=-2x+24(0<x<12)B.y=-x+12(0<x<24)
C.y=-2x-24(0<x<12)D.y=-x-12(0<x<24)
12.下列因式分解正确的是( )
A.B.
C.D.
二、填空题(每题4分,共24分)
13.用四舍五入法,对3.5952取近似值,精确到0.01,结果为______.
14.如图,在中,是边上一点,且在的垂直平分线上,若,,则 _________.
15.如图,在中.是的平分线.为上一点,于点.若,,则的度数为__________.
16.如图,在平面直角坐标系中,点A1,A2,A3…都在x轴上,点B1,B2,B3…都在直线上,,,…,都是等腰直角三角形,若OA1=1,则点B2020的坐标是_______.
17.若等腰三角形的周长为26cm,一边为11cm,则腰长为_____.
18.若2m=a,32n=b,m,n为正整数,则22m+15n= (结果用含a、b的式子表示)
三、解答题(共78分)
19.(8分)已知,求实数A和B的值.
20.(8分)在中,垂直平分,分别交、于点、,垂直平分,分别交,于点、.
⑴如图①,若,求的度数;
⑵如图②,若,求的度数;
⑶若,直接写出用表示大小的代数式.
21.(8分)先化简,再求值:,其中
22.(10分)如图所示,△ABD和△BCD都是等边三角形,E、F分别是边AD、CD上的点,且DE=CF,连接BE、EF、FB.
求证:(1)△ABE≌△DBF;
(2)△BEF是等边三角形.
23.(10分)以下表示小明到水果店购买2个单价相同椰子和10个单价相同柠檬的经过.小明: 老板根据上面两人对话,求原来椰子和柠檬的单价各是多少?
24.(10分)先阅读理解下面的例题,再按要求解答:
例题:解不等式
解:由有理数的乘法法则“两数相乘,同号得正”,
得①或②
解不等式组①得,解不等式组②得,
所以不等式的解集为或.
问题:求不等式的解集.
25.(12分)如图,小巷左石两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离BC为0.7米,梯子顶端到地面的距离AC为2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,梯子顶端到地面的距离A′D为1.5米,求小巷有多宽.
26.阅读下列材料,然后解答问题:
问题:分解因式:.
解答:把带入多项式,发现此多项式的值为0,由此确定多项式中有因式,于是可设,分别求出,的值.再代入,就容易分解多项式,这种分解因式的方法叫做“试根法”.
(1)求上述式子中,的值;
(2)请你用“试根法”分解因式:.
参考答案
一、选择题(每题4分,共48分)
1、D
【解析】过点P作PF⊥AD于F,作PG⊥BC于G,根据角平分线上的点到角的两边距离相等可得PF=PE,PG=PE,再根据平行线之间的距离的定义判断出EG的长即为AD、BC间的距离.
【详解】过作,,由题意知平分,
∴,
同理,
∴.
【点睛】
本题考查了角平分线上的点到角的两边距离相等的性质,平行线间的距离的定义,熟记性质并作辅助线构造出AD、BC间的距离的线段是解题的关键.
2、C
【解析】试题解析:A、(1)(5)(2)符合“SAS”,能判断△ABC与△DEF全等,故本选项错误;
B、(1)(2)(3)符合“SSS”,能判断△ABC与△DEF全等,故本选项错误;
C、(2)(3)(4),是边边角,不能判断△ABC与△DEF全等,故本选项正确;
D、(4)(6)(1)符合“AAS”,能判断△ABC与△DEF全等,故本选项错误.
故选C.
3、C
【解析】试题分析:分当腰长为4cm或是腰长为8cm两种情况:①当腰长是4cm时,则三角形的三边是4cm,4cm,8cm,4cm+4cm=8cm不满足三角形的三边关系;当腰长是8cm时,三角形的三边是8cm,8cm,4cm,三角形的周长是20cm.故答案选C.
考点:等腰三角形的性质;三角形三边关系.
4、C
【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.
【详解】解:A.0是整数,属于有理数;
是有限小数,属于有理数;
C.π是无理数;
D.,是整数,属于有理数.
故选:C.
【点睛】
本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有ππ的数.
5、B
【分析】根据三角形的内角和定理和勾股定理的逆定理逐一判断即可.
【详解】解:A. 若三内角之比为1:2:3,则最大的内角为180°×=90°,是直角三角形,故本选项不符合题意;
B. 三内角之比为3:4:5,则最大的内角为180°×=75°,不是直角三角形,故本选项符合题意;
C. 三边之比为3:4:5,设这三条边为3x、4x、5x,因为(3x)2+(4x)2=(5x)2,所以能够成直角三角形,故本选项不符合题意;
D. 三边之比为5:12:13,设这三条边为5x、12x、13x,因为(5x)2+(12x)2=(13x)2,所以能够成直角三角形,故本选项不符合题意.
故选B.
【点睛】
此题考查的是直角三角形的判定,掌握三角形的内角和定理和勾股定理的逆定理是解决此题的关键.
6、A
【分析】连接AB,与直线的交点就是点C,此时最小,先求出直线AB的解析式,然后求出点C的坐标即可
【详解】解:根据题意,如图,连接AB,与直线的交点就是点C,
则此时最小,
设点A、B所在的直线为,则
,解得:,
∴,
∴,解得:,
∴点C的坐标为:;
故选:A.
【点睛】
本题考查了一次函数的图形和性质,以及最短路径问题,解题的关键是正确确定点C的位置,求出直线AB的解析式,进而求出点C.
7、A
【分析】通过条件列出计算平均数的式子,然后将式子进行变形代入即可.
【详解】解:由题意可知,,
∴,
故选:A.
【点睛】
本题考查了平均数的计算,熟练掌握平均数的计算方法并将式子进行正确的变形是解题的关键.
8、A
【解析】根据勾股定理逆定理依次计算即可得到答案.
【详解】A. ,故不能构成直角三角形;
B. ,能构成直角三角形;
C. ,能构成直角三角形;
D. ,能构成直角三角形;
故选:A.
【点睛】
此题考查勾股定理的逆定理,熟记定理并正确计算是解题的关键.
9、C
【分析】因为题中没有指明该角是顶角还是底角,则应该分两种情况进行分析.
【详解】解:①当顶角是80°时,它的底角=(180°﹣80°)=50°;
②底角是80°.
所以底角是50°或80°.
故选:C.
【点睛】
本题考查了等腰三角形底角的问题,掌握等腰三角形的性质是解题的关键.
10、B
【分析】依次化简各分式,判断即可.
【详解】A、,选项错误;
B、无法再化简,选项正确;
C、,选项错误;
D、,选项错误;
故选B.
【点睛】
本题是对最简分式的考查,熟练掌握分式化简是解决本题的关键.
11、B
【分析】根据题意可得2y+x=24,继而可得出y与x之间的函数关系式,及自变量x的范围.
【详解】解:由题意得:2y+x=24,
故可得:y=x +12(0<x<24).
故选:B.
【点睛】
此题考查了根据实际问题列一次函数关系式的知识,属于基础题,解答本题关键是根据三边总长应恰好为24米,列出等式.
12、C
【分析】分别利用公式法和提公因式法对各选项进行判断即可.
【详解】解:A.无法分解因式,故此选项错误;
B.,故此选项错误;
C.,故此选项正确;
D.,故此选项错误.
故选:C.
【点睛】
本题主要考查了公式法以及提取公因式法分解因式,一个多项式如有公因式首先提取公因式,然后再用公式法进行因式分解.如果剩余的是两项,考虑使用平方差公式,如果剩余的是三项,则考虑使用完全平方公式.同时,因式分解要彻底,要分解到不能分解为止.
二、填空题(每题4分,共24分)
13、3.1
【分析】根据近似数的精确度把千分位上的数字5进行四舍五入即可.
【详解】解:3.5952≈3.1(精确到0.01).
故答案为3.1.
【点睛】
本题考查近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.
14、33
【分析】根据等腰三角形的性质,可得,由三角形内角和定理,求得,再由垂直平分线的性质,结合外角性质,可求得即得.
【详解】,由三角形内角和,
,
在的垂直平分线上,
,利用三角形外角性质,
,
故答案为:33.
【点睛】
考查了等腰三角形的性质,三角形内角和的定理,以及垂直平分线的性质和外角性质,通过关系式找到等角进行代换是解题关键,注意把几何图形的性质内容要熟记.
15、65°
【分析】先求出∠ADB的度数,继而根据三角形外角的性质求出∠CAD的度数,再根据角平分线的定义求出∠BAC的度数,进而根据三角形内角和定理求解即可得.
【详解】∵EF⊥BC,
∴∠EFD=90°,
又∵∠DEF=15°,
∴∠ADB=90°-∠DEF=90°-15°=75°,
∵∠C=35°,∠ADB=∠C+∠CAD,
∴∠CAD=75°-35°=40°,
∵AD是∠BAC的平分线,
∴∠BAC=2∠CAD=80°,
∴∠B=180°-∠BAC-∠C=180°-80°-35°=65°,
故答案为:65°.
【点睛】
本题考查了三角形内角和定理,三角形外角的性质,直角三角形两锐角互余,角平分线的定义等知识,准确识图,熟练掌握和灵活运用相关知识是解题的关键.
16、
【分析】根据等腰直角三角形的性质和一次函数上点的特征,依次写出,,,....找出一般性规律即可得出答案.
【详解】解:当x=0时,,
即,
∵是等腰直角三角形,
∴,
将x=1代入得,
∴,
同理可得
……
∴.
故答案为:.
【点睛】
本题考查了一次函数图象上点的坐标特征:一次函数y=kx+b,(k≠0,且k,b为常数)的图象是一条直线,直线上任意一点的坐标都满足函数关系式y=kx+b.也考查了等腰直角三角形的性质.
17、11cm或7.5cm
【解析】试题解析::①11cm是腰长时,腰长为11cm,
②11cm是底边时,腰长=(26-11)=7.5cm,
所以,腰长是11cm或7.5cm.
18、
【分析】同底数幂相乘,底数不变,指数相加
【详解】原式=.
故答案为
考点:同底数幂的计算
三、解答题(共78分)
19、A=1,B=1
【分析】首先对等式的右边进行通分相加,然后根据分母相同,得到分子相同.根据两个多项式相等,则其同次项的系数应当相等,得到关于A,B的方程,进行求解.
【详解】∵,
∴3x﹣4=(A+B)x+(﹣1A﹣B),
比较两边分子的系数,,
∴A=1,B=1.
【点睛】
掌握分式的加法运算,能够根据两个多项式相等得到关于A,B的方程.
20、(1)∠EAN=44°;(2)∠EAN=16°;(3)当0<α<90°时,∠EAN=180°-2α;当α>90°时,∠EAN=2α-180°.
【分析】(1)根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角可得∠BAE=∠B,同理可得,∠CAN=∠C,然后利用三角形的内角和定理求出∠B+∠C,再根据∠EAN=∠BAC-(∠BAE+∠CAN)代入数据进行计算即可得解;
(2)同(1)的思路,最后根据∠EAN=∠BAE+∠CAN-∠BAC代入数据进行计算即可得解;
(3)根据前两问的求解,分α<90°与α>90°两种情况解答.
【详解】(1)∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠EAN=∠BAC-∠BAE-∠CAN=∠BAC-(∠B+∠C),
在△ABC中,∠B+∠C=180°-∠BAC=180°-112°=68°,
∴∠EAN=∠BAC-(∠BAE+∠CAN)=112°-68°=44°;
(2)∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,
在△ABC中,∠B+∠C=180°-∠BAC=180°-82°=98°,
∴∠EAN=∠BAE+∠CAN-∠BAC=98°-82°=16°;
(3)当0<α<90°时,
∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠EAN=∠BAE+∠CAN-∠BAC=(∠B+∠C)-∠BAC,
在△ABC中,∠B+∠C=180°-∠BAC=180°-α,
∴∠EAN=∠BAE+∠CAN-∠BAC=180°-α-α=180°-2α;
当α>90°时,
∵DE垂直平分AB,
∴AE=BE,
∴∠BAE=∠B,
同理可得:∠CAN=∠C,
∴∠EAN=∠BAC-∠BAE-∠CAN=∠BAC-(∠B+∠C),
在△ABC中,∠B+∠C=180°-∠BAC=180°-α,
∴∠EAN=∠BAC-(∠BAE+∠CAN)=α-(180°-α)=2α-180°.
【点睛】
本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,等边对等角的性质,三角形的内角和定理,整体思想的利用是解题的关键.
21、,
【分析】先根据分式的混合运算顺序和运算法则化简原式,再将代入化简后的式子即可解答本题.
【详解】解:
;
当时,
原式
【点睛】
本题主要考查了分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.
22、(1)详见解析;(2)详见解析.
【分析】(1)根据等边三角形的性质及SAS推出△ABE≌△DBF即可;
(2)根据全等三角形的性质得出BE=BF,∠ABE=∠DBF,求出∠EBF=60°,根据等边三角形的判定推出即可.
【详解】证明:(1)∵△ABD和△BCD都是等边三角形,
∴∠ABD=∠A=∠BDF=60°,AB=AD=DB=CD,
∵DE=CF,
∴AE=DF,
在△ABE和△DBF中,
∴△ABE≌△DBF(SAS);
(2)∵△ABE≌△DBF,
∴BE=BF,∠ABE=∠DBF,
∴∠EBF=∠EBD+∠DBF=∠EBD+∠ABE=∠ABD=60°,
∴△BEF是等边三角形.
【点睛】
本题主要考查全等三角形的判定及性质,等边三角形的判定及性质,掌握全等三角形和等边三角形的判定方法和性质是解题的关键.
23、椰子的单价为25元,柠檬的单价为5元
【解析】设原来椰子和柠檬的单价各是x元和y元,根据图中信息可得等量关系:2个椰子的价钱+10个柠檬的价钱=100元,2个椰子的价钱+0.9×10个柠檬的价钱=95,据此列方程组求解即可.
【详解】设原来椰子和柠檬的单价各是x元和y元,
根据题意,得,
解得,
答:椰子的单价为25元,柠檬的单价为5元.
【点睛】
本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.
24、.
【分析】仿造例题,将所求不等式变形为不等式组,然后进一步求取不等式组的解集最终得出答案即可.
【详解】∵两数相乘(或相除),异号得负,
∴由不等式可得:
或 ,
解不等式组①得:,
解不等式组②得:该不等式组无解,
综上所述,所以原不等式解集为:.
【点睛】
本题主要考查了不等式组解集的求取,熟练掌握相关方法是解题关键.
25、2.7米.
【解析】先根据勾股定理求出AB的长,同理可得出BD的长,进而可得出结论.
【详解】在Rt△ACB中,∵∠ACB=90°,BC=0.7米,AC=2.2米,
∴AB2=0.72+2.22=6.1.
在Rt△A′BD中,∵∠A′DB=90°,A′D=1.5米,BD2+A′D2=A′B′2,
∴BD2+1.52=6.1,
∴BD2=2.
∵BD>0,
∴BD=2米.
∴CD=BC+BD=0.7+2=2.7米.
答:小巷的宽度CD为2.7米.
【点睛】
本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.
26、(1),;(2)
【分析】(1)先找出一个x的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论;
(2)先找出x=-1时,得出多项式的值,进而找出一个因式,再将多项式设成分解因式的形式,即可得出结论.
【详解】解:(1)把带入多项式,发现此多项式的值为0,
∴多项式中有因式,
于是可设,
得出:,
∴,,
∴,,
(2)把代入,多项式的值为0,
∴多项式中有因式,
于是可设,
∴,,
∴,,
∴
【点睛】
此题是分解因式,主要考查了试根法分解因式的理解和掌握,解本题的关键是理解试根法分解因式.
数学:辽宁省鞍山市台安县2023-2024学年八年级下学期期中试题(解析版): 这是一份数学:辽宁省鞍山市台安县2023-2024学年八年级下学期期中试题(解析版),共16页。试卷主要包含了选择题,填空题,计算题,解答题等内容,欢迎下载使用。
2024年辽宁省鞍山市台安县部分学校中考数学一模试卷 含解析: 这是一份2024年辽宁省鞍山市台安县部分学校中考数学一模试卷 含解析,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2024年辽宁省鞍山市台安县部分学校中考模拟(一模)数学试题(原卷版+解析版): 这是一份2024年辽宁省鞍山市台安县部分学校中考模拟(一模)数学试题(原卷版+解析版),文件包含精品解析2024年辽宁省鞍山市台安县部分学校中考模拟一模数学试题原卷版docx、精品解析2024年辽宁省鞍山市台安县部分学校中考模拟一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。