|试卷下载
搜索
    上传资料 赚现金
    2022届辽宁省鞍山市台安县中考适应性考试数学试题含解析
    立即下载
    加入资料篮
    2022届辽宁省鞍山市台安县中考适应性考试数学试题含解析01
    2022届辽宁省鞍山市台安县中考适应性考试数学试题含解析02
    2022届辽宁省鞍山市台安县中考适应性考试数学试题含解析03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022届辽宁省鞍山市台安县中考适应性考试数学试题含解析

    展开
    这是一份2022届辽宁省鞍山市台安县中考适应性考试数学试题含解析,共22页。试卷主要包含了考生必须保证答题卡的整洁,下列事件是确定事件的是,化简的结果为等内容,欢迎下载使用。

    1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
    2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
    3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
    4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1.如图,△ABC为钝角三角形,将△ABC绕点A按逆时针方向旋转120°得到△AB′C′,连接BB′,若AC′∥BB′,则∠CAB′的度数为( )
    A.45°B.60°C.70°D.90°
    2.下列计算正确的是( )
    A.x2+x3=x5B.x2•x3=x5C.(﹣x2)3=x8D.x6÷x2=x3
    3.在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,tanA的值为( )
    A.B.C.D.3
    4.下列说法正确的是( )
    A.“明天降雨的概率是60%”表示明天有60%的时间都在降雨
    B.“抛一枚硬币正面朝上的概率为50%”表示每抛2次就有一次正面朝上
    C.“彩票中奖的概率为1%”表示买100张彩票肯定会中奖
    D.“抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近
    5.如图,在矩形ABCD中,E,F分别是边AB,CD上的点,AE=CF,连接EF,BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC,FC=2,则AB的长为( )
    A.8B.8C.4D.6
    6.下列事件是确定事件的是( )
    A.阴天一定会下雨
    B.黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门
    C.打开电视机,任选一个频道,屏幕上正在播放新闻联播
    D.在五个抽屉中任意放入6本书,则至少有一个抽屉里有两本书
    7.化简的结果为( )
    A.﹣1B.1C.D.
    8.在0.3,﹣3,0,﹣这四个数中,最大的是( )
    A.0.3B.﹣3C.0D.﹣
    9.如图,在平面直角坐标系中,△ABC位于第二象限,点B的坐标是(﹣5,2),先把△ABC向右平移4个单位长度得到△A1B1C1,再作与△A1B1C1关于于x轴对称的△A2B2C2,则点B的对应点B2的坐标是( )
    A.(﹣3,2)B.(2,﹣3)C.(1,2)D.(﹣1,﹣2)
    10.如图是一个由4个相同的正方体组成的立体图形,它的主视图是( )
    A.B.C.D.
    二、填空题(共7小题,每小题3分,满分21分)
    11.将一副直角三角板如图放置,使含30°角的三角板的短直角边和含45°角的三角板的一条直角边重合,则∠1的度数为__度.
    12.如图,在△ABC中,∠C=∠ABC,BE⊥AC,垂足为点E,△BDE是等边三角形,若AD=4,则线段BE的长为______.
    13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是_____.
    14.如图,、分别为△ABC的边、延长线上的点,且DE∥BC.如果,CE=16,那么AE的长为_______
    15.现有三张分别标有数字2、3、4的卡片,它们除了数字外完全相同,把卡片背面朝上洗匀,从中任意抽取一张,将上面的数字记为a(不放回);从剩下的卡片中再任意抽取一张,将上面的数字记为b,则点(a,b)在直线 图象上的概率为__.
    16.如图,⊙O在△ABC三边上截得的弦长相等,∠A=70°,则∠BOC=_____度.
    17.已知函数y=-1,给出一下结论:
    ①y的值随x的增大而减小
    ②此函数的图形与x轴的交点为(1,0)
    ③当x>0时,y的值随x的增大而越来越接近-1
    ④当x≤时,y的取值范围是y≥1
    以上结论正确的是_________(填序号)
    三、解答题(共7小题,满分69分)
    18.(10分)(1)如图1,正方形ABCD中,点E,F分别在边CD,AD上,AE⊥BF于点G,求证:AE=BF;
    (2)如图2,矩形ABCD中,AB=2,BC=3,点E,F分别在边CD,AD上,AE⊥BF于点M,探究AE与BF的数量关系,并证明你的结论;
    (3)在(2)的基础上,若AB=m,BC=n,其他条件不变,请直接写出AE与BF的数量关系; .
    19.(5分)计算:(﹣2018)0﹣4sin45°+﹣2﹣1.
    20.(8分)为了解某市市民上班时常用交通工具的状况,某课题小组随机调查了部分市民(问卷调查表如表所示),并根据调查结果绘制了如图所示的尚不完整的统计图:
    根据以上统计图,解答下列问题:本次接受调查的市民共有 人;扇形统计图中,扇形B的圆心角度数是 ;请补全条形统计图;若该市“上班族”约有15万人,请估计乘公交车上班的人数.
    21.(10分)解方程组: .
    22.(10分)如图,已知△ABC中,AB=BC=5,tan∠ABC=.求边AC的长;设边BC的垂直平分线与边AB的交点为D,求的值.
    23.(12分)如图,一次函数y=﹣x+4的图象与反比例函数y=(k为常数,且k≠0)的图象交于A(1,a),B(3,b)两点.求反比例函数的表达式在x轴上找一点P,使PA+PB的值最小,求满足条件的点P的坐标求△PAB的面积.
    24.(14分)我们知道,平面内互相垂直且有公共原点的两条数轴构成平面直角坐标系,如果两条数轴不垂直,而是相交成任意的角ω(0°<ω<180°且ω≠90°),那么这两条数轴构成的是平面斜坐标系,两条数轴称为斜坐标系的坐标轴,公共原点称为斜坐标系的原点,如图1,经过平面内一点P作坐标轴的平行线PM和PN,分别交x轴和y轴于点M,N.点M、N在x轴和y轴上所对应的数分别叫做P点的x坐标和y坐标,有序实数对(x,y)称为点P的斜坐标,记为P(x,y).
    (1)如图2,ω=45°,矩形OABC中的一边OA在x轴上,BC与y轴交于点D,OA=2,OC=l.
    ①点A、B、C在此斜坐标系内的坐标分别为A ,B ,C .
    ②设点P(x,y)在经过O、B两点的直线上,则y与x之间满足的关系为 .
    ③设点Q(x,y)在经过A、D两点的直线上,则y与x之间满足的关系为 .
    (2)若ω=120°,O为坐标原点.
    ①如图3,圆M与y轴相切原点O,被x轴截得的弦长OA=4 ,求圆M的半径及圆心M的斜坐标.
    ②如图4,圆M的圆心斜坐标为M(2,2),若圆上恰有两个点到y轴的距离为1,则圆M的半径r的取值范围是 .
    参考答案
    一、选择题(每小题只有一个正确答案,每小题3分,满分30分)
    1、D
    【解析】
    已知△ABC绕点A按逆时针方向旋转l20°得到△AB′C′,根据旋转的性质可得∠BAB′=∠CAC′=120°,AB=AB′,根据等腰三角形的性质和三角形的内角和定理可得∠AB′B=(180°-120°)=30°,再由AC′∥BB′,可得∠C′AB′=∠AB′B=30°,所以∠CAB′=∠CAC′-∠C′AB′=120°-30°=90°.故选D.
    2、B
    【解析】
    分析:直接利用合并同类项法则以及同底数幂的乘除运算法则和积的乘方运算法则分别计算得出答案.
    详解:A、不是同类项,无法计算,故此选项错误;
    B、 正确;
    C、 故此选项错误;
    D、 故此选项错误;
    故选:B.
    点睛:此题主要考查了合并同类项以及同底数幂的乘除运算和积的乘方运算,正确掌握运算法则是解题关键.
    3、B
    【解析】
    根据勾股定理和三角函数即可解答.
    【详解】
    解:已知在Rt△ABC中∠C=90°,∠A、∠B、∠C的对边分别为a、b、c,c=3a,
    设a=x,则c=3x,b==2x.
    即tanA==.
    故选B.
    【点睛】
    本题考查勾股定理和三角函数,熟悉掌握是解题关键.
    4、D
    【解析】
    根据概率是指某件事发生的可能性为多少,随着试验次数的增加,稳定在某一个固定数附近,可得答案.
    【详解】
    解:A. “明天降雨的概率是60%”表示明天下雨的可能性较大,故A不符合题意;
    B. “抛一枚硬币正面朝上的概率为”表示每次抛正面朝上的概率都是,故B不符合题意;
    C. “彩票中奖的概率为1%”表示买100张彩票有可能中奖.故C不符合题意;
    D. “抛一枚正方体骰子,朝上的点数为2的概率为”表示随着抛掷次数的增加,“抛出朝上的点数为2”这一事件发生的概率稳定在附近,故D符合题意;
    故选D
    【点睛】
    本题考查了概率的意义,正确理解概率的含义是解决本题的关键.
    5、D
    【解析】
    分析: 连接OB,根据等腰三角形三线合一的性质可得BO⊥EF,再根据矩形的性质可得OA=OB,根据等边对等角的性质可得∠BAC=∠ABO,再根据三角形的内角和定理列式求出∠ABO=30°,即∠BAC=30°,根据直角三角形30°角所对的直角边等于斜边的一半求出AC,再利用勾股定理列式计算即可求出AB.
    详解: 如图,连接OB,
    ∵BE=BF,OE=OF,
    ∴BO⊥EF,
    ∴在Rt△BEO中,∠BEF+∠ABO=90°,
    由直角三角形斜边上的中线等于斜边上的一半可知:OA=OB=OC,
    ∴∠BAC=∠ABO,
    又∵∠BEF=2∠BAC,
    即2∠BAC+∠BAC=90°,
    解得∠BAC=30°,
    ∴∠FCA=30°,
    ∴∠FBC=30°,
    ∵FC=2,
    ∴BC=2,
    ∴AC=2BC=4,
    ∴AB===6,
    故选D.
    点睛: 本题考查了矩形的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,直角三角形30°角所对的直角边等于斜边的一半,综合题,但难度不大,(2)作辅助线并求出∠BAC=30°是解题的关键.
    6、D
    【解析】
    试题分析:找到一定发生或一定不发生的事件即可.
    A、阴天一定会下雨,是随机事件;
    B、黑暗中从5把不同的钥匙中随意摸出一把,用它打开了门,是随机事件;
    C、打开电视机,任选一个频道,屏幕上正在播放新闻联播,是随机事件;
    D、在学校操场上向上抛出的篮球一定会下落,是必然事件.
    故选D.
    考点:随机事件.
    7、B
    【解析】
    先把分式进行通分,把异分母分式化为同分母分式,再把分子相加,即可求出答案.
    【详解】
    解:.
    故选B.
    8、A
    【解析】
    根据正数大于0,0大于负数,正数大于负数,比较即可
    【详解】
    ∵-3<-<0<0.3
    ∴最大为0.3
    故选A.
    【点睛】
    本题考查实数比较大小,解题的关键是正确理解正数大于0,0大于负数,正数大于负数,本题属于基础题型.
    9、D
    【解析】
    首先利用平移的性质得到△A1B1C1中点B的对应点B1坐标,进而利用关于x轴对称点的性质得到△A2B2C2中B2的坐标,即可得出答案.
    【详解】
    解:把△ABC向右平移4个单位长度得到△A1B1C1,此时点B(-5,2)的对应点B1坐标为(-1,2),
    则与△A1B1C1关于于x轴对称的△A2B2C2中B2的坐标为(-1,-2),
    故选D.
    【点睛】
    此题主要考查了平移变换以及轴对称变换,正确掌握变换规律是解题关键.
    10、D
    【解析】
    从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,据此解答即可.
    【详解】
    ∵从正面看,有2层,3列,左侧一列有1层,中间一列有2层,右侧一列有一层,
    ∴D是该几何体的主视图.
    故选D.
    【点睛】
    本题考查三视图的知识,从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,被遮挡的线画虚线.
    二、填空题(共7小题,每小题3分,满分21分)
    11、1.
    【解析】
    根据一副直角三角板的各个角的度数,结合三角形内角和定理,即可求解.
    【详解】
    ∵∠3=60°,∠4=45°,
    ∴∠1=∠5=180°﹣∠3﹣∠4=1°.
    故答案为:1.
    【点睛】
    本题主要考查三角形的内角和定理以及对顶角的性质,掌握三角形的内角和等于180°,是解题的关键.
    12、1
    【解析】
    本题首先由等边三角形的性质及垂直定义得到∠DBE=60°,∠BEC=90°,再根据等腰三角形的性质可以得出∠EBC=∠ABC-60°=∠C-60°,最后根据三角形内角和定理得出关系式∠C-60°+∠C=90°解出∠C,推出AD=DE,于是得到结论.
    【详解】
    ∵△BDE是正三角形,
    ∴∠DBE=60°;
    ∵在△ABC中,∠C=∠ABC,BE⊥AC,
    ∴∠C=∠ABC=∠ABE+∠EBC,则∠EBC=∠ABC-60°=∠C-60°,∠BEC=90°;
    ∴∠EBC+∠C=90°,即∠C-60°+∠C=90°,
    解得∠C=75°,
    ∴∠ABC=75°,
    ∴∠A=30°,
    ∵∠AED=90°-∠DEB=30°,
    ∴∠A=∠AED,
    ∴DE=AD=1,
    ∴BE=DE=1,
    故答案为:1.
    【点睛】
    本题主要考查等腰三角形的性质及等边三角形的性质及垂直定义,解题的关键是根据三角形内角和定理列出符合题意的简易方程,从而求出结果.
    13、35°
    【解析】
    分析:先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°-∠3代入数据进行计算即可得解.
    详解:∵直尺的两边互相平行,∠1=25°,
    ∴∠3=∠1=25°,
    ∴∠2=60°-∠3=60°-25°=35°.
    故答案为35°.
    点睛:本题考查了平行线的性质,三角板的知识,熟记平行线的性质是解题的关键.
    14、1
    【解析】
    根据DE∥BC,得到,再代入AC=11-AE,则可求AE长.
    【详解】
    ∵DE∥BC,
    ∴.
    ∵,CE=11,
    ∴,解得AE=1.
    故答案为1.
    【点睛】
    本题主要考查相似三角形的判定和性质,正确写出比例式是解题的关键.
    15、
    【解析】
    根据题意列出图表,即可表示(a,b)所有可能出现的结果,根据一次函数的性质求出在图象上的点,即可得出答案.
    【详解】
    画树状图得:
    ∵共有6种等可能的结果(2,3),(2,4),(3,2),(3,4),(4,2),(4,3),在直线 图象上的只有(3,2),
    ∴点(a,b)在图象上的概率为.
    【点睛】
    本题考查了用列表法或树状图法求概率.注意画树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;注意此题属于不放回实验.
    16、125
    【解析】
    解:过O作OM⊥AB,ON⊥AC,OP⊥BC,垂足分别为M,N,P
    ∵∠A=70°,∠B+∠C=180∘−∠A=110°
    ∵O在△ABC三边上截得的弦长相等,
    ∴OM=ON=OP,
    ∴O是∠B,∠C平分线的交点
    ∴∠BOC=180°−12(∠B+∠C)=180°−12×110°=125°.

    故答案为:125°
    【点睛】
    本题考查了圆心角、弧、弦的关系, 三角形内角和定理, 角平分线的性质,解题的关键是掌握它们的性质和定理.
    17、②③
    【解析】
    (1)因为函数的图象有两个分支,在每个分支上y随x的增大而减小,所以结论①错误;
    (2)由解得:,
    ∴的图象与x轴的交点为(1,0),故②中结论正确;
    (3)由可知当x>0时,y的值随x的增大而越来越接近-1,故③中结论正确;
    (4)因为在中,当时,,故④中结论错误;
    综上所述,正确的结论是②③.
    故答案为:②③.
    三、解答题(共7小题,满分69分)
    18、(1)证明见解析;(2)AE=BF,(3)AE=BF;
    【解析】
    (1)根据正方形的性质,可得∠ABC与∠C的关系,AB与BC的关系,根据两直线垂直,可得∠AMB的度数,根据直角三角形锐角的关系,可得∠ABM与∠BAM的关系,根据同角的余角相等,可得∠BAM与∠CBF的关系,根据ASA,可得△ABE≌△BCF,根据全等三角形的性质,可得答案;(2)根据矩形的性质得到∠ABC=∠C,由余角的性质得到∠BAM=∠CBF,根据相似三角形的性质即可得到结论;(3)结论:AE=BF.证明方法类似(2);
    【详解】
    (1)证明:
    ∵四边形ABCD是正方形,
    ∴∠ABC=∠C,AB=BC.
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF.
    在△ABE和△BCF中,

    ∴△ABE≌△BCF(ASA),
    ∴AE=BF;
    (2)解:如图2中,结论:AE=BF,
    理由:∵四边形ABCD是矩形,
    ∴∠ABC=∠C,
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF,
    ∴△ABE∽△BCF,
    ∴,
    ∴AE=BF.
    (3)结论:AE=BF.
    理由:∵四边形ABCD是矩形,
    ∴∠ABC=∠C,
    ∵AE⊥BF,
    ∴∠AMB=∠BAM+∠ABM=90°,
    ∵∠ABM+∠CBF=90°,
    ∴∠BAM=∠CBF,
    ∴△ABE∽△BCF,
    ∴,
    ∴AE=BF.
    【点睛】
    本题考查了四边形综合题、相似三角形的判定和性质,全等三角形的判定和性质,正方形的性质,矩形的性质,熟练掌握全等三角形或相似三角形的判定和性质是解题的关键.
    19、.
    【解析】
    根据零指数幂和特殊角的三角函数值进行计算
    【详解】
    解:原式=1﹣4×+2﹣
    =1﹣2+2﹣

    【点睛】
    本题考查了实数的运算:实数的运算和在有理数范围内一样,值得一提的是,实数既可以进行加、减、乘、除、乘方运算,又可以进行开方运算,其中正实数可以开平方.
    20、(1)1;(2)43.2°;(3)条形统计图如图所示:见解析;(4)估计乘公交车上班的人数为6万人.
    【解析】
    (1)根据D组人数以及百分比计算即可.
    (2)根据圆心角度数=360°×百分比计算即可.
    (3)求出A,C两组人数画出条形图即可.
    (4)利用样本估计总体的思想解决问题即可.
    【详解】
    (1)本次接受调查的市民共有:50÷25%=1(人),
    故答案为1.
    (2)扇形统计图中,扇形B的圆心角度数=360°×=43.2°;
    故答案为:43.2°
    (3)C组人数=1×40%=80(人),A组人数=1﹣24﹣80﹣50﹣16=30(人).
    条形统计图如图所示:
    (4)15×40%=6(万人).
    答:估计乘公交车上班的人数为6万人.
    【点睛】
    本题考查条形统计图,扇形统计图,样本估计总体等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
    21、
    【解析】
    方程组整理后,利用加减消元法求出解即可.
    【详解】
    解:方程组整理得:
    ①+②得:9x=-45,即x=-5,
    把x=-代入①得:
    解得:
    则原方程组的解为
    【点睛】
    本题主要考查二元一次方程组的解法,二元一次方程组的解法有两种:代入消元法和加减消元法,根据题目选择合适的方法.
    22、(1)AC=;(2).
    【解析】
    【分析】(1)过A作AE⊥BC,在直角三角形ABE中,利用锐角三角函数定义求出AC的长即可;
    (2)由DF垂直平分BC,求出BF的长,利用锐角三角函数定义求出DF的长,利用勾股定理求出BD的长,进而求出AD的长,即可求出所求.
    【详解】(1)如图,过点A作AE⊥BC,
    在Rt△ABE中,tan∠ABC=,AB=5,
    ∴AE=3,BE=4,
    ∴CE=BC﹣BE=5﹣4=1,
    在Rt△AEC中,根据勾股定理得:AC==;
    (2)∵DF垂直平分BC,
    ∴BD=CD,BF=CF=,
    ∵tan∠DBF=,
    ∴DF=,
    在Rt△BFD中,根据勾股定理得:BD==,
    ∴AD=5﹣=,
    则.
    【点睛】本题考查了解直角三角形的应用,正确添加辅助线、根据边角关系熟练应用三角函数进行解答是解题的关键.
    23、(1)反比例函数的表达式y=,(2)点P坐标(,0), (3)S△PAB= 1.1.
    【解析】
    (1)把点A(1,a)代入一次函数中可得到A点坐标,再把A点坐标代入反比例解析式中即可得到反比例函数的表达式;(2)作点D关于x轴的对称点D,连接AD交x轴于点P,此时PA+PB的值最小.由B可知D点坐标,再由待定系数法求出直线AD的解析式,即可得到点P的坐标;(3)由S△PAB=S△ABD﹣S△PBD即可求出△PAB的面积.
    解:(1)把点A(1,a)代入一次函数y=﹣x+4,
    得a=﹣1+4,
    解得a=3,
    ∴A(1,3),
    点A(1,3)代入反比例函数y=,
    得k=3,
    ∴反比例函数的表达式y=,
    (2)把B(3,b)代入y=得,b=1
    ∴点B坐标(3,1);
    作点B作关于x轴的对称点D,交x轴于点C,连接AD,交x轴于点P,此时PA+PB的值最小,
    ∴D(3,﹣1),
    设直线AD的解析式为y=mx+n,
    把A,D两点代入得,, 解得m=﹣2,n=1,
    ∴直线AD的解析式为y=﹣2x+1,
    令y=0,得x=,
    ∴点P坐标(,0),
    (3)S△PAB=S△ABD﹣S△PBD=×2×2﹣×2×=2﹣=1.1.
    点晴:本题是一道一次函数与反比例函数的综合题,并与几何图形结合在一起来求有关于最值方面的问题.此类问题的重点是在于通过待定系数法求出函数图象的解析式,再通过函数解析式反过来求坐标,为接下来求面积做好铺垫.
    24、(1)①(2,0),(1,),(﹣1,);②y=x;③ y=x,y=﹣x+;(2)①半径为4,M(,);②﹣1<r<+1.
    【解析】
    (1)①如图2-1中,作BE∥OD交OA于E,CF∥OD交x轴于F.求出OE、OF、CF、OD、BE即可解决问题;②如图2-2中,作BE∥OD交OA于E,作PM∥OD交OA于M.利用平行线分线段成比例定理即可解决问题;③如图3-3中,作QM∥OA交OD于M.利用平行线分线段成比例定理即可解决问题;
    (2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N.解直角三角形即可解决问题;②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.求出FN=NE=1时,⊙M的半径即可解决问题.
    【详解】
    (1)①如图2﹣1中,作BE∥OD交OA于E,CF∥OD交x轴于F,
    由题意OC=CD=1,OA=BC=2,
    ∴BD=OE=1,OD=CF=BE=,
    ∴A(2,0),B(1,),C(﹣1,),
    故答案为(2,0),(1,),(﹣1,);
    ②如图2﹣2中,作BE∥OD交OA于E,作PM∥OD交OA于M,
    ∵OD∥BE,OD∥PM,
    ∴BE∥PM,
    ∴=,
    ∴,
    ∴y=x;
    ③如图2﹣3中,作QM∥OA交OD于M,
    则有,
    ∴,
    ∴y=﹣x+,
    故答案为y=x,y=﹣x+;
    (2)①如图3中,作MF⊥OA于F,作MN∥y轴交OA于N,
    ∵ω=120°,OM⊥y轴,
    ∴∠MOA=30°,
    ∵MF⊥OA,OA=4,
    ∴OF=FA=2,
    ∴FM=2,OM=2FM=4,
    ∵MN∥y轴,
    ∴MN⊥OM,
    ∴MN=,ON=2MN=,
    ∴M(,);
    ②如图4中,连接OM,作MK∥x轴交y轴于K,作MN⊥OK于N交⊙M于E、F.
    ∵MK∥x轴,ω=120°,
    ∴∠MKO=60°,
    ∵MK=OK=2,
    ∴△MKO是等边三角形,
    ∴MN=,
    当FN=1时,MF=﹣1,
    当EN=1时,ME=+1,
    观察图象可知当⊙M的半径r的取值范围为﹣1<r<+1.
    故答案为:﹣1<r<+1.
    【点睛】
    本题考查圆综合题、平行线分线段成比例定理、等边三角形的判定和性质、平面直角坐标系等知识,解题的关键是学会添加常用辅助线,构造平行线解决问题,属于中考压轴题.
    相关试卷

    2024年辽宁省鞍山市台安县部分学校中考数学一模试卷 含解析: 这是一份2024年辽宁省鞍山市台安县部分学校中考数学一模试卷 含解析,共31页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2024年辽宁省鞍山市台安县部分学校中考模拟(一模)数学试题(原卷版+解析版): 这是一份2024年辽宁省鞍山市台安县部分学校中考模拟(一模)数学试题(原卷版+解析版),文件包含精品解析2024年辽宁省鞍山市台安县部分学校中考模拟一模数学试题原卷版docx、精品解析2024年辽宁省鞍山市台安县部分学校中考模拟一模数学试题解析版docx等2份试卷配套教学资源,其中试卷共31页, 欢迎下载使用。

    辽宁省鞍山市台安县部分学校2023-2024年中考模拟(一模)数学试题.1: 这是一份辽宁省鞍山市台安县部分学校2023-2024年中考模拟(一模)数学试题.1,共12页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map