年终活动
搜索
    上传资料 赚现金

    2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版)

    2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版)第1页
    2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版)第2页
    2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版)第3页
    还剩11页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版)

    展开

    这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题12 概率统计(原卷版),共14页。试卷主要包含了并部分整理下表等内容,欢迎下载使用。
    1.(新课标全国Ⅱ卷)某农业研究部门在面积相等的100块稻田上种植一种新型水稻,得到各块稻田的亩产量(均在之间,单位:kg)并部分整理下表
    据表中数据,结论中正确的是( )
    A.100块稻田亩产量的中位数小于1050kg
    B.100块稻田中亩产量低于1100kg的稻田所占比例超过80%
    C.100块稻田亩产量的极差介于200kg至300kg之间
    D.100块稻田亩产量的平均值介于900kg至1000kg之间
    2.(新高考天津卷)下列图中,相关性系数最大的是( )
    A.B.
    C.D.
    3.(全国甲卷数学(文))甲、乙、丙、丁四人排成一列,丙不在排头,且甲或乙在排尾的概率是( )
    A.B.C.D.
    4.(新高考上海卷)已知气候温度和海水表层温度相关,且相关系数为正数,对此描述正确的是( )
    A.气候温度高,海水表层温度就高
    B.气候温度高,海水表层温度就低
    C.随着气候温度由低到高,海水表层温度呈上升趋势
    D.随着气候温度由低到高,海水表层温度呈下降趋势
    5.(新课标全国Ⅰ卷)(多选)为了解推动出口后的亩收入(单位:万元)情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值,样本方差,已知该种植区以往的亩收入服从正态分布,假设推动出口后的亩收入服从正态分布,则( )(若随机变量Z服从正态分布,)
    A.B.
    C.D.
    6.(新课标全国Ⅰ卷)甲、乙两人各有四张卡片,每张卡片上标有一个数字,甲的卡片上分别标有数字1,3,5,7,乙的卡片上分别标有数字2,4,6,8,两人进行四轮比赛,在每轮比赛中,两人各自从自己持有的卡片中随机选一张,并比较所选卡片上数字的大小,数字大的人得1分,数字小的人得0分,然后各自弃置此轮所选的卡片(弃置的卡片在此后的轮次中不能使用).则四轮比赛后,甲的总得分不小于2的概率为 .
    7.(全国甲卷数学(理))有6个相同的球,分别标有数字1、2、3、4、5、6,从中不放回地随机抽取3次,每次取1个球.记为前两次取出的球上数字的平均值,为取出的三个球上数字的平均值,则与差的绝对值不超过的概率是 .
    8.(新高考天津卷)五种活动,甲、乙都要选择三个活动参加.(1)甲选到的概率为 ;已知乙选了活动,他再选择活动的概率为 .
    9.(新高考上海卷)某校举办科学竞技比赛,有3种题库,题库有5000道题,题库有4000道题,题库有3000道题.小申已完成所有题,他题库的正确率是0.92,题库的正确率是0.86,题库的正确率是0.72.现他从所有的题中随机选一题,正确率是 .
    10.(新课标全国Ⅱ卷)某投篮比赛分为两个阶段,每个参赛队由两名队员组成,比赛具体规则如下:第一阶段由参赛队中一名队员投篮3次,若3次都未投中,则该队被淘汰,比赛成员为0分;若至少投中一次,则该队进入第二阶段,由该队的另一名队员投篮3次,每次投中得5分,未投中得0分.该队的比赛成绩为第二阶段的得分总和.某参赛队由甲、乙两名队员组成,设甲每次投中的概率为p,乙每次投中的概率为q,各次投中与否相互独立.
    (1)若,,甲参加第一阶段比赛,求甲、乙所在队的比赛成绩不少于5分的概率.
    (2)假设,
    (i)为使得甲、乙所在队的比赛成绩为15分的概率最大,应该由谁参加第一阶段比赛?
    (ii)为使得甲、乙,所在队的比赛成绩的数学期望最大,应该由谁参加第一阶段比赛?
    11.(全国甲卷数学(理))某工厂进行生产线智能化升级改造,升级改造后,从该工厂甲、乙两个车间的产品中随机抽取150件进行检验,数据如下:
    (1)填写如下列联表:
    能否有的把握认为甲、乙两车间产品的优级品率存在差异?能否有的把握认为甲,乙两车间产品的优级品率存在差异?
    (2)已知升级改造前该工厂产品的优级品率,设为升级改造后抽取的n件产品的优级品率.如果,则认为该工厂产品的优级品率提高了,根据抽取的150件产品的数据,能否认为生产线智能化升级改造后,该工厂产品的优级品率提高了?()
    附:
    12.(新高考北京卷)已知某险种的保费为万元,前3次出险每次赔付万元,第4次赔付万元
    在总体中抽样100单,以频率估计概率:
    (1)求随机抽取一单,赔偿不少于2次的概率;
    (2)(i)毛利润是保费与赔偿金额之差.设毛利润为,估计的数学期望;
    (ⅱ)若未赔偿过的保单下一保险期的保费下降,已赔偿过的增加.估计保单下一保险期毛利润的数学期望.
    13.(新高考上海卷)为了解某地初中学生体育锻炼时长与学业成绩的关系,从该地区29000名学生中抽取580人,得到日均体育锻炼时长与学业成绩的数据如下表所示:
    (1)该地区29000名学生中体育锻炼时长不少于1小时人数约为多少?
    (2)估计该地区初中学生日均体育锻炼的时长(精确到0.1)
    (3)是否有的把握认为学业成绩优秀与日均体育锻炼时长不小于1小时且小于2小时有关?
    (附:其中,.)
    一、单选题
    1.(2024·山东·模拟预测)一组数据按从小到大的顺序排列为1,4,,12,14,21,若该组数据的中位数是极差的,则该组数据的第45百分位数是( )
    A.4B.6C.8D.12
    2.(2024·福建泉州·二模)己知线性回归方程相应于点的残差为,则的值为( )
    A.B.C.2.4D.2.5
    3.(2024·陕西·三模)2024年1月九省联考的数学试卷出现新结构,其中多选题计分标准如下:①本题共3小题,每小题6分,满分18分;②每道小题的四个选项中有两个或三个正确选项,全部选对得6分,有选错的得0分;③部分选对得部分分(若某小题正确选项为两个,漏选一个正确选项得3分;若某小题正确选项为三个,漏选一个正确选项得4分,漏选两个正确选项得2分).已知在某次新结构数学试题的考试中,小明同学三个多选题中第一小题确定得满分,第二小题随机地选了两个选项,第三小题随机地选了一个选项,则小明同学多选题所有可能总得分(相同总分只记录一次)的中位数为( )
    A.9B.10C.11D.12
    4.(2024·四川成都·三模)如图,由观测数据 的散点图可知, 与 的关系可以用模型 拟合,设 ,利用最小二乘法求得 关于 的回归方程 . 已知 , ,则 ( )
    A.B.C.1D.
    5.(2024·天津·二模)为了加深师生对党史的了解,激发广大师生知史爱党、知史爱国的热情,某校举办了“学党史、育文化”的党史知识竞赛,并将1000名师生的竞赛成绩(满分100分,成绩取整数)整理成如图所示的频率分布直方图,估计这组数据的第85百分位数为( )分
    A.84B.85C.86D.87
    6.(2024·四川绵阳·模拟预测)某教育机构为调查中小学生每日完成作业的时间,收集了某位学生100天每天完成作业的时间,并绘制了如图所示的频率分布直方图(每个区间均为左闭右开),根据此直方图得出了下列结论,其中正确的是( )

    A.估计该学生每日完成作业的时间在2小时至2.5小时的有50天
    B.估计该学生每日完成作业时间超过3小时的概率为0.3
    C.估计该学生每日完成作业时间的中位数为2.625小时
    D.估计该学生每日完成作业时间的众数为2.3小时
    7.(2024·上海·三模)下列命题错误的是( )
    A.两个随机变量的线性相关性越强,相关系数的绝对值越接近于1
    B.设,若,,则
    C.线性回归直线一定经过样本点的中心
    D.一个袋子中有100个大小相同的球,其中有40个黄球、60个白球,从中不放回地随机摸出20个球作为样本,用随机变量X表示样本中黄球的个数,则X服从二项分布,且
    8.(2024·湖北荆州·三模)根据变量和的成对样本数据,由一元线性回归模型得到经验回归模型,求得如图所示的残差图.模型误差( )
    A.满足一元线性回归模型的所有假设
    B.不满足一元线性回归模型的的假设
    C.不满足一元线性回归模型的假设
    D.不满足一元线性回归模型的和的假设
    9.(2024·黑龙江·二模)根据分类变量x与y的成对样本数据,计算得,依据的独立性检验,结论为( )参考值:
    A.x与y不独立
    B.x与y不独立,这个结论犯错误的概率不超过0.05
    C. x与y独立
    D.x与y独立,这个结论犯错误的概率不超过0.05
    10.(2024·四川绵阳·模拟预测)袋子中有9个除颜色外完全相同的小球,其中5个红球,4个黄球.若从袋子中任取3个球,则在摸到的球颜色不同的条件下,最终摸球的结果为2红1黄的概率为( )
    A.B.C.D.
    11.(2024·河南·三模)已知0.9973.某体育器材厂生产一批篮球,单个篮球的质量(单位:克)服从正态分布,从这一批篮球中随机抽检300个,则被抽检的篮球的质量不小于596克的个数约为( )
    A.286B.293C.252D.246
    12.(2024·河北衡水·三模)已知甲、乙、丙三人参加射击比赛,甲、乙、丙三人射击一次命中的概率分别为,且每个人射击相互独立,若每人各射击一次,则在三人中恰有两人命中的前提下,甲命中的概率为( )
    A.B.C.D.
    13.(2024·湖南长沙·三模)已知随机变量服从正态分布,且,则( )
    A.0.2B.0.3C.0.7D.0.8
    二、多选题
    14.(2024·河北·三模)根据中国报告大厅对2023年3月~10月全国太阳能发电量进行监测统计,太阳能发电量(单位:亿千瓦时)月度数据统计如下表:
    关于2023年3月~10月全国太阳能发电量,下列四种说法正确的是( )
    A.中位数是259.115B.极差是38.32
    C.第85百分位数是259.33D.第25百分位数是240.59
    15.(2024·江西南昌·二模)为了解中学生喜爱足球运动与性别是否有关,甲、乙两校的课题组分别随机抽取了本校部分学生进行调查,得到如下两个表格:
    甲校样本
    乙校样本
    (参考公式及数据:).
    则下列判断中正确的是( )
    A.样本中,甲校男学生喜爱足球运动的比例高于乙校男学生喜爱足球运动的比例
    B.样本中,甲校女学生喜爱足球运动的比例高于乙校女学生喜爱足球运动的比例
    C.根据甲校样本有的把握认为中学生喜爱足球运动与性别有关
    D.根据乙校样本有的把握认为中学生喜爱足球运动与性别有关
    16.(2024·湖南长沙·三模)某校在运动会期间进行了一场“不服来战”对抗赛,由篮球专业的1名体育生组成甲组,3名非体育生的篮球爱好者组成乙组,两组进行对抗比赛.具体规则为甲组的同学连续投球3次,乙组的同学每人各投球1次.若甲组同学和乙组3名同学的命中率依次分别为,则( )
    A.乙组同学恰好命中2次的概率为
    B.甲组同学恰好命中2次的概率小于乙组同学恰好命中2次的概率
    C.甲组同学命中次数的方差为
    D.乙组同学命中次数的数学期望为
    17.(2024·全国·二模)甲、乙两个不透明的袋子中分别装两种颜色不同但是大小相同的小球,甲袋中装有3个红球和4个绿球;乙袋中装有5个红球和2个绿球.先从甲袋中随机摸出一个小球放入乙袋中,再从乙袋中随机获出一个小球,记表示事件“从甲袋摸出的是红球”,表示事件“从甲袋摸出的是绿球”,记表示事件“从乙袋摸出的是红球”,表示事件“从乙袋摸出的是绿球”,则下列说法正确的是( )
    A.,是对立事件B.,是独立事件
    C.D.
    18.(2024·河南·二模)现有编号分别为的三个盒子,其中盒中共20个小球,其中红球6个,盒中共20个小球,其中红球5个,盒中共30个小球,其中红球6个.现从所有球中随机抽取一个,记事件:“该球为红球”,事件:“该球出自编号为的盒中”,则下列说法正确的是( )
    A.
    B.
    C.
    D.若从所有红球中随机抽取一个,则该球来自盒的概率最小
    19.(2024·山东日照·二模)同时投掷甲、乙两枚质地均匀的硬币,记“甲正面向上”为事件,“乙正面向上”为事件,“甲、乙至少一枚正面向上”为事件,则下列判断正确的是( )
    A.与相互独立B.与互斥C.D.
    20.(2024·福建三明·三模)假设甲袋中有3个红球和2个白球,乙袋中有2个白球和2个红球.现从甲袋中任取2个球放入乙袋,混匀后再从乙袋中任取2个球.下列选项正确的是( )
    A.从甲袋中任取2个球是1个红球1个白球的概率为
    B.从甲、乙两袋中取出的2个球均为红球的概率为
    C.从乙袋中取出的2个球是红球的概率为
    D.已知从乙袋中取出的是2个红球,则从甲袋中取出的也是2个红球的概率为
    三、填空题
    21.(2024·上海·三模)已知A工厂库房中的某种零件60%来自甲公司,正品率为90%;40%来自乙公司,正品率为95%,从库房中任取一个这种零件,它是正品的概率为
    22.(2024·安徽安庆·三模)一个不透明的袋子装有5个完全相同的小球,球上分别标有数字1,2,3,4,4.现甲从中随机摸出一个球记下所标数字后放回,乙再从中随机摸出一个球记下所标数字,若摸出的球上所标数字大即获胜(若所标数字相同则为平局),则在甲获胜的条件下,乙摸到2号球的概率为 .
    23.(2024·天津·模拟预测)一个袋子中有10个大小相同的球,其中红球7个,黑球3个.每次从袋中随机摸出1个球,摸出的球不再放回.设第1,2,3次都摸到红球的概率为;在第1,2次都摸到红球的条件下,第3次摸到红球的概率为.求 .
    24.(2024·福建厦门·模拟预测)在n维空间中(,),以单位长度为边长的“立方体”的顶点坐标可表示为n维坐标,其中.则5维“立方体”的顶点个数是 ;定义:在n维空间中两点与的曼哈顿距离为.在5维“立方体”的顶点中任取两个不同的顶点,记随机变量X为所取两点间的曼哈顿距离,则 .
    25.(2024·广东广州·模拟预测)如图所示,一个质点在随机外力的作用下,从原点出发,每隔等可能地向左或向右移动一个单位,共移动5次.该质点在有且仅有一次经过位置的条件下,共经过两次1位置的概率为 .
    26.(2024·广东广州·三模)在一个抽奖游戏中,主持人从编号为的四个外观相同的空箱子中随机选择一个,放入一件奖品,再将四个箱子关闭,也就是主持人知道奖品在哪个箱子里,当抽奖人选择了某个箱子后,在箱子打开之前,主持人先随机打开了另一个没有奖品的箱子,并问抽奖人是否愿意更改选择以便增加中奖概率.现在已知甲选择了号箱,用表示号箱有奖品(),用表示主持人打开号箱子(),则 ,若抽奖人更改了选择,则其中奖概率为 .
    四、解答题
    27.(2024·福建泉州·二模)在一个抽奖游戏中,主持人从编号为1,2,3,4的四个外观相同的空箱子中随机选择一个,放入一件奖品,再将四个箱子关闭.主持人知道奖品在哪个箱子里.游戏规则是:主持人请抽奖人在这四个箱子中选择一个,若奖品在此箱子里,则奖品由获奖人获得.现有抽奖人甲选择了2号箱,在打开2号箱之前,主持人先打开了另外三个箱子中的一个空箱子.按游戏规则,主持人将随机打开甲选择之外的一个空箱子,记为X号箱.
    (1)求的概率;
    (2)求X的方差;
    (3)若,现在给抽奖人甲一次重新选择的机会,请问他是坚持选2号箱,还是改选3号或4号箱?
    28.(2024·陕西·三模)“村超”是贵州省榕江县举办的“和美乡村足球超级联赛”的简称.在2023年火爆“出圈”后,“村超”热度不减.2024年1月6日,万众瞩目的2024年“村超”新赛季在“村味”十足的热闹中拉开帷幕,一场由乡村足球发起的“乐子”正转化为乡村振兴的“路子”,为了解不同年龄的游客对“村超”的满意度,某组织进行了一次抽样调查,分别抽取年龄超过35周岁和年龄不超过35周岁各200人作为样本,每位参与调查的游客都对“村超”给出满意或不满意的评价.设事件“游客对“村超”满意”,事件“游客年龄不超过35周岁”,据统计,.
    (1)根据已知条件,填写下列列联表并说明理由;
    (2)由(1)中列联表数据,分析是否有的把握认为游客对“村超”的满意度与年龄有关联?附:.
    参考数据:
    29.(2024·浙江杭州·二模)杭州是国家历史文化名城,为了给来杭州的客人提供最好的旅游服务,某景点推出了预订优惠活动,下表是该景点在某App平台10天预订票销售情况:
    经计算可得:.
    (1)因为该景点今年预订票购买火爆程度远超预期,该App平台在第10天时系统异常,现剔除第10天数据,求关于的线性回归方程(结果中的数值用分数表示);
    (2)该景点推出团体票,每份团体票包含四张门票,其中张为有奖门票(可凭票兑换景点纪念品),的分布列如下:
    今从某份团体票中随机抽取2张,恰有1张为有奖门票,求该份团体票中共有3张有奖门票的概率.
    附:对于一组数据,其回归线的斜率和截距的最小二乘估计分别为:
    30.(2024·湖南长沙·三模)如图,在数轴上一个质点在外力的作用下,从原点出发,每隔向左或向右移动一个单位,向右移动的概率为,共移动,设随机变量为移动后质点的坐标.
    (1)求移动后质点的坐标为正数的概率;
    (2)求随机变量的分布列及数学期望.
    31.(2024·北京·三模)某公司有甲、乙两条生产线生产同一种产品,该产品有两个指标.从两条产品线上各随机抽取一些产品,指标数据如下表:
    假设用频率估计概率,且两条生产线相互独立.
    (1)从甲生产线上随机抽取一件产品,估计其指标大于1且指标大于2的概率;
    (2)从甲、乙生产线上各随机抽取一件产品,设X表示指标大于2的产品数,估计X的数学期望;
    (3)已知产品指标之和与3的差的绝对值越小则产品越好,两条生产线各生产一件产品,甲、乙哪条生产线产品更好的概率估计值最大?(结论不要求证明)
    32.(2024·湖南衡阳·三模)现有A,B两个不透明盒子,都装有m个红球和m个白球,这些球的大小、形状、质地完全相同.
    (1)若,甲、乙、丙依次从A盒中不放回的摸出一球,设X表示三人摸出的白球个数之和,求X的分布列与数学期望;
    (2)若,从A、B两个盒子中各任取一个球交换放入另一个盒子中,次这样的操作后,记A盒子中红球的个数为,求:
    (i)的概率;
    (ii)的分布列.
    33.(2024·广东广州·三模)甲进行摸球跳格游戏,图上标有第1格,第2格,,第25格,棋子开始在第1格.盒中有5个大小相同的小球,其中3个红球,2个白球(5个球除颜色外其他都相同).每次甲在盒中随机摸出两球,记下颜色后放回盒中,若两球颜色相同,棋子向前跳1格;若两球颜色不同,棋子向前跳2格,直到棋子跳到第24格或第25格时,游戏结束.记棋子跳到第格的概率为.
    (1)甲在一次摸球中摸出红球的个数记为,求的分布列和期望;
    (2)求的通项公式.
    34.(2024·河北衡水·模拟预测)已知甲口袋有个红球和2个白球,乙口袋有个红球和2个白球,小明从甲口袋有放回地连续摸球2次,每次摸出一个球,然后再从乙口袋有放回地连续摸球2次,每次摸出一个球.
    (1)当时,
    (i)求小明4次摸球中,至少摸出1个白球的概率;
    (ii)设小明4次摸球中,摸出白球的个数为,求的数学期望;
    (2)当时,设小明4次摸球中,恰有3次摸出红球的概率为,则当为何值时,最大?
    35.(2024·湖南长沙·三模)开展中小学生课后服务,是促进学生健康成长、帮助家长解决接送学生困难的重要举措 是进一步增强教育服务能力、使人民群众具有更多获得感和幸福感的民生工程. 某校为 确保学生课后服务工作顺利开展,制定了两套工作方案,为了解学生对这两个方案的支 持情况,对学生进行简单随机抽样,获得数据如表:
    假设用频率估计概率,且所有学生对活动方案是否支 持相互独立.
    (1)从该校支持方案一和支持方案二的学生中各随机抽取1人,设为抽出两人中女生的个数,求的分布列与数学期望;
    (2)在(1)中表示抽出两人中男生的个数,试判断方差与的大小.
    亩产量
    [900,950)
    [950,1000)
    [1000,1050)
    [1100,1150)
    [1150,1200)
    频数
    6
    12
    18
    24
    10
    优级品
    合格品
    不合格品
    总计
    甲车间
    26
    24
    0
    50
    乙车间
    70
    28
    2
    100
    总计
    96
    52
    2
    150
    优级品
    非优级品
    甲车间
    乙车间
    0.050
    0.010
    0.001
    k
    3.841
    6.635
    10.828
    赔偿次数
    0
    1
    2
    3
    4
    单数
    时间范围学业成绩
    优秀
    5
    44
    42
    3
    1
    不优秀
    134
    147
    137
    40
    27
    0.1
    0.05
    0.01
    2.706
    3.841
    6.635
    月份
    3
    4
    5
    6
    发电量/亿千瓦时
    242.94
    230.87
    240.59
    259.33
    月份
    7
    8
    9
    10
    发电量/亿千瓦时
    258.9
    269.19
    246.06
    244.31
    喜爱足球运动
    不喜爱足球运动
    合计
    男性
    15
    5
    20
    女性
    8
    12
    20
    合计
    23
    17
    40
    喜爱足球运动
    不喜爱足球运动
    合计
    男性
    70
    30
    100
    女性
    45
    55
    100
    合计
    115
    85
    200
    0.1
    0.01
    0.001
    2.706
    6.635
    10.828
    年龄
    满意
    不满意
    合计
    年龄不超过35周岁
    年龄超过35周岁
    合计
    0.10
    0.05
    0.025
    0.010
    0.005
    0.001
    2.706
    3.841
    5.024
    6.635
    7.879
    10.828
    日期
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    销售量(万张)
    1.93
    1.95
    1.97
    1.98
    2.01
    2.02
    2.02
    2.05
    2.07
    0.5
    2
    3
    4
    甲生产线
    产品序号
    1
    2
    3
    4
    5
    6
    7
    8
    9
    10
    指标
    0.98
    0.96
    1.07
    1.02
    1.00
    0.93
    0.92
    0.96
    1.11
    1.02
    指标
    2.01
    1.97
    1.96
    2.03
    2.03
    1.98
    1.95
    1.99
    2.07
    2.02
    乙生产线
    产品序号
    1
    2
    3
    4
    5
    6
    7
    8
    指标
    1.02
    0.97
    0.95
    0.94
    1.13
    0.98
    0.97
    1.01
    指标
    2.01
    2.03
    2.15
    1.93
    2.01
    2.02
    2.19
    2.04


    支持方案一
    24
    16
    支持方案二
    25
    35

    相关试卷

    2024年高考真题和模拟题数学分类汇编(全国通用)专题05 数列(原卷版):

    这是一份2024年高考真题和模拟题数学分类汇编(全国通用)专题05 数列(原卷版),共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。

    专题12 概率统计(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用):

    这是一份专题12 概率统计(原卷版+解析版)【好题汇编】2024年高考真题和模拟题数学分类汇编(全国通用),文件包含专题12概率统计原卷版好题汇编2024年高考真题和模拟题数学分类汇编全国通用docx、专题12概率统计解析版好题汇编2024年高考真题和模拟题数学分类汇编全国通用docx等2份试卷配套教学资源,其中试卷共56页, 欢迎下载使用。

    2023年高考真题和模拟题数学分项汇编(全国通用)专题12+概率统计:

    这是一份2023年高考真题和模拟题数学分项汇编(全国通用)专题12+概率统计,文件包含2023年高考真题和模拟题数学分项汇编全国通用专题12概率统计解析版docx、2023年高考真题和模拟题数学分项汇编全国通用专题12概率统计原卷版docx等2份试卷配套教学资源,其中试卷共30页, 欢迎下载使用。

    文档详情页底部广告位
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map