还剩21页未读,
继续阅读
所属成套资源:苏教版七年级下册数学举一反三(含答案解析)
成套系列资料,整套一键下载
专题7.18 平面图形的认识(二)章末十四大题型总结(拔尖篇)(苏科版)(学生版)
展开
这是一份专题7.18 平面图形的认识(二)章末十四大题型总结(拔尖篇)(苏科版)(学生版),共24页。
专题7.18 平面图形的认识(二)章末十四大题型总结(拔尖篇)【苏科版】TOC \o "1-3" \h \u HYPERLINK \l "_Toc1434" 【题型1 平行线在三角板中的运用】 PAGEREF _Toc1434 \h 1 HYPERLINK \l "_Toc2145" 【题型2 平行线在折叠中的运用】 PAGEREF _Toc2145 \h 3 HYPERLINK \l "_Toc29193" 【题型3 旋转使平行】 PAGEREF _Toc29193 \h 4 HYPERLINK \l "_Toc10893" 【题型4 利用平行线求角度之间的关系】 PAGEREF _Toc10893 \h 5 HYPERLINK \l "_Toc32318" 【题型5 利用平行线解决角度定值问题】 PAGEREF _Toc32318 \h 8 HYPERLINK \l "_Toc12899" 【题型6 平行线的阅读理解类问题】 PAGEREF _Toc12899 \h 10 HYPERLINK \l "_Toc21370" 【题型7 平行线的性质在生活中的应用】 PAGEREF _Toc21370 \h 12 HYPERLINK \l "_Toc5653" 【题型8 平行线与动点的综合应用】 PAGEREF _Toc5653 \h 13 HYPERLINK \l "_Toc335" 【题型9 利用三角形的中线求面积】 PAGEREF _Toc335 \h 15 HYPERLINK \l "_Toc30831" 【题型10 利用三角形的三边关系求线段的最值或取值范围】 PAGEREF _Toc30831 \h 17 HYPERLINK \l "_Toc13015" 【题型11 利用三角形的三边关系化简或证明】 PAGEREF _Toc13015 \h 17 HYPERLINK \l "_Toc1460" 【题型12 与角平分线有关的三角形角的计算问题】 PAGEREF _Toc1460 \h 18 HYPERLINK \l "_Toc8850" 【题型13 与平行线有关的三角形角的计算问题】 PAGEREF _Toc8850 \h 20 HYPERLINK \l "_Toc30853" 【题型14 与折叠有关的三角形角的计算问题】 PAGEREF _Toc30853 \h 22【题型1 平行线在三角板中的运用】【例1】(2023下·浙江温州·七年级校考期中)将一副直角三角板如图1,摆放在直线MN上(直角三角板ABC和直角三角板EDC,∠EDC=90°,∠DEC=60°,∠ABC=90°,∠BAC=45°),保持三角板EDC不动,将三角板ABC绕点C以每秒5°的速度,顺时针方向旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转. (1)如图2,当AC为∠DCE的角平分线时,直接写出此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB的数量关系.(3)在旋转过程中,当三角板ABC的其中一边与ED平行时,请直接写出此时t的值.【变式1-1】(2023下·河南安阳·七年级统考期末)如图1,将一副三角板中的两个直角顶点C叠放在一起,其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)观察猜想,∠BCD与∠ACE的数量关系是________;∠BCE与∠ACD的数量关系是________;(2)类比探究,若按住三角板ABC不动,顺时针绕直角顶点C转动三角形DCE,试探究当∠ACD等于多少度时CE//AB,画出图形并简要说明理由;(3)拓展应用,若∠BCE=3∠ACD,求∠ACD的度数;并直接写出此时DE与AC的位置关系.【变式1-2】(2023上·湖南长沙·七年级校考期末)如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC= 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①∠CPD∠BPN为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.【变式1-3】(2023上·福建泉州·七年级统考期末)如图1,将三角板ABC与三角板ADE摆放在一起,其中∠ACB=30°,∠DAE=45°,∠BAC=∠D=90°,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,当点E落在射线AC的反向延长线上时,即停止旋转.(1)如图2,当边AC落在∠DAE内,①∠CAD与∠BAE之间存在怎样的数量关系?试说明理由;②过点A作射线AF,AG,若∠CAF=13∠CAD,∠BAG=14∠EAG,求∠FAG的度数;(2)设△ADE的旋转速度为3°/秒,旋转时间为t,若它的一边与△ABC的某一边平行(不含重合情况),试写出所有符合条件的t的值.【题型2 平行线在折叠中的运用】【例2】(2023下·浙江温州·七年级校联考期中)如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFC=37°,点H和点G分别是边AD和BC上的动点,现将点A,B,C,D分别沿EF,GH折叠至点N,M,P,K,若MN∥PK,则∠KHD的度数为( )A.37°或143° B.74°或96° C.37°或105° D.74°或106°【变式2-1】(2023下·福建宁德·七年级统考期末)如图,将一条长方形彩带ABCD进行两次折叠,先沿折痕MN向上折叠,再沿折痕AM向背面折叠,若要使两次折叠后彩带的夹角∠2=26°,则第一次折叠时∠1应等于 °. 【变式2-2】(2023下·浙江温州·七年级温州市第十二中学校联考期中)已知M,N分别是长方形纸条ABCD边AB,CD上两点(AM>DN),如图1所示,沿M,N所在直线进行第一次折叠,点A,D的对应点分别为点E,F,EM交CD于点P;如图2所示,继续沿PM进行第二次折叠,点B,C的对应点分别为点G,H,若∠1=∠2,则∠CPM的度数为( ) A.74° B.72° C.70° D.68°【变式2-3】(2023下·河南南阳·七年级统考期末)如图,已知四边形纸片ABCD的边AB∥CD,E是边CD上任意一点,△BCE沿BE折叠,点C落在点F的位置. (1)观察发现:如图①所示:∠C=60°,∠FED=45°,则∠ABF=______.(2)拓展探究:如图②,点F落在四边形ABCD的内部,探究∠FED,∠ABF,∠C之间的数量关系,并证明;(3)迁移应用:如图③,点F落在边CD的上方,则(2)中的结论是否成立?若成立,请证明:若不成立,请写出它们的数量关系并证明.【题型3 旋转使平行】【例3】(2023下·江苏苏州·七年级统考期末)在一次课外活动中,小明将一副直角三角板如图放置,E在AC上, ,,.小明将ADE从图中位置开始,绕点按每秒的速度顺时针旋转一周,在旋转过程中,第 秒时,边与边平行.【变式3-1】(2023下·河北唐山·七年级统考期末)如图,分别将木条a,b与固定的木条c钉在一起,,,顺时针转动木条a,下列选项能使木条a与b平行的是( ) A.旋转30° B.旋转50° C.旋转80° D.旋转130°【变式3-2】(2023下·安徽六安·七年级统考期末)两块不同的三角板按如图1所示摆放,边与边重合,,接着如图2保持三角板不动,将三角板绕着点(点不动)按顺时针(如图标示方向)旋转,在旋转的过程中,逐渐增大,当第一次等于时,停止旋转,在此旋转过程中, 时,三角板有一条边与三角板的一条边恰好平行. 【变式3-3】(2023下·河北唐山·七年级统考期中)如图(1),在三角形ABC中,,BC边绕点C按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2),使,则( )A. B. C.或 D.或【题型4 利用平行线求角度之间的关系】【例4】(2023下·广东广州·七年级统考期末)点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.(1)如图1,若点E在线段AC上,求证:∠B+∠D=∠BED;(2)若点E不在线段AC上,试猜想并证明∠B,∠D,∠BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得∠ABE=∠EBM,∠CDE=∠EDM,同时点F使得∠ABE=n∠EBF,∠CDE=n∠EDF,其中n≥1,设∠BMD=m,利用(1)中的结论求∠BFD的度数(用含m,n的代数式表示).【变式4-1】(2023下·广东广州·七年级统考期末)甲同学在学完《相交线与平行线》后,想通过折铁丝的方式进一步探索相交线与平行线的知识,他的具体操作步骤如下:第一步:将一根铁丝AB在C,D,E处弯折得到如下图①的形状,其中AC∥DE,CD∥BE.第二步:将DE绕点D旋转一定角度,再将BE绕点E旋转一定角度并在BE上某点F处弯折,得到如下图②的形状.第三步:再拿出另外一根铁丝弯折成∠G,跟前面弯折的铁丝叠放成如下图③的形状.请根据上面的操作步骤,解答下列问题:(1)如图①,若∠C=2∠D,求∠E;(2)如图②,若AC∥BF,请判断∠C,∠D,∠E,∠F之间的数量关系,并说明理由;(3)在(2)的条件下,如图③,若∠ACD=3∠DCG,∠DEF=3∠DEG,设∠D=x,∠F=y,求∠G.(用含x,y的式子表示)【变式4-2】(2023下·安徽·七年级统考期末)如图,直线m∥n,Rt△ABC中∠ACB=90°,Rt△ABC的边AC、AB与直线m相交于D、E两点,边BC、AB与直线n交于F、G两点. (1)将Rt△ABC如图1位置摆放,如果∠ADE=46°,则∠CFG=______;(2)将Rt△ABC如图2位置摆放,H为AC上一点,∠HFG+∠CFG=180°,请写出∠HFG与∠ADE之间的数量关系,并说明理由;(3)将Rt△ABC如图3位置摆放,若∠EDC=140°,延长AC交直线n于点K,点P是射线EG上一动点,探究∠PDK,∠DPK与∠PKG的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).【变式4-3】(2023下·湖北武汉·七年级统考期末)【问题情境】如图1,AB∥CD,直线EG交AB于点H,交CD于点G,点F在直线AB上.直接写出∠E,∠EFH,∠EGD之间的数量关系为 . 【实践运用】如图2,AB∥CD,直线EG交AB于点H,交CD于点G,点F在直线AB上.FT平分∠EFH,GM平分∠EGC,若∠E=40°,求∠FMG的度数. 【拓广探索】如图3,AB∥CD,直线EG交AB于点H,交CD于点G,点P为平面内不在直线AB,CD,EG上的一点,若∠BHP=x,∠DGP=y,则∠HPG= (直接写出答案,用x,y表示). 【题型5 利用平行线解决角度定值问题】【例5】(2023下·河南商丘·七年级统考期末)已知 AB∥CD,P是截线MN上的一点,MN与CD,AB分别交于E,F. (1)如图(1),P在AB、CD之间,若∠EFB=50°,∠EDP=35°,求∠MPD的度数;(2)如图(1),当点P在线段EF上运动时,∠CDP与∠ABP的平分线交于Q,则∠Q∠DPB是否为定值?若是定值,请求出定值;若不是,说明其范围;(3)如图(2),当点P在线段FE的延长线上运动时,∠CDP与∠ABP的平分线交于Q,∠Q∠DPB的值是否为定值?若是,求出定值,若不是,请说明理由.【变式5-1】(2023下·福建龙岩·七年级校考阶段练习)如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM⊥BC于点B,AE平分∠BAD交BC于点E,连接DE,∠1+∠2=90°. (1)求证:AE⊥ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【变式5-2】(2023下·河北保定·七年级统考期末)如图1,已知∠EFH=90°,点A,C分别在射线FE和FH上,在∠EFH内部作射线AB,CD,使AB平行于CD.(1)如图1,若FAB=150°,求∠HCD的度数;(2)小颖发现,在∠EFH内部,无论FAB如何变化,∠FAB-∠HCD的值始终为定值,请你结合图2求出这一定值;(3)①如图3,把图1中的∠EFH=90°改为∠EFH=120°,其他条件不变,请直接写出∠FAB与∠HCD之间的数量关系;②如图4,已知∠EFG+∠FGC=α,点A,C分别在射线FE,GH上,在∠EFG与∠FGH内部作射线AB,CD,使AB平行于CD,请直接写出∠FAB与∠HCD之间的数量关系.【变式5-3】(2023下·湖北武汉·七年级统考期末)如图1,已知直线l1∥l2,点A、B在直线l1上,点C、D在l2上,线段AD交线段BC于点E,且∠BED=60°.(1)求证:∠ABE+∠EDC=60°;(2)如图2,当F、G分别在线段AE、EC上,且∠ABF=2∠FBE,∠EDG=2∠GDC,标记∠BFE为∠1,∠BGD为∠2.①若∠1-∠2=16°,求∠ADC的度数;②当k=________时,k∠1+∠2为定值,此时定值为________.【题型6 平行线的阅读理解类问题】【例6】(2023下·江苏泰州·七年级泰州市海军中学校考阶段练习)【注重阅读理解】阅读以下材料:已知点B,D分别在AK和CF上,且CF∥AK.(1)如图1,若∠CDE=22°,∠DEB=75°,则∠ABE的度数为______;(2)如图2,BG平分∠ABE,GB延长线与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°,求∠DEB的度数.(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说明理由.【变式6-1】(2023下·湖北孝感·七年级统考期末)[课题学习]:平行线的“等角转化”功能. [阅读理解]:如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程.解:过点A作ED∥BC,所以∠B=_________,∠C=__________, 又因为∠EAB+∠BAC+∠DAC=180°所以∠B+∠BAC+∠C=180°.[解题反思]:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C “凑”在一起,得到角的关系,使问题得到解决.[方法运用]:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.[深化拓展]:(3)已知AB∥CD,点C在D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,若∠ABC=60°,则∠BED=__________°;②如图4,点B在点A的右侧,若∠ABC=n°,则∠BED=________°.(用含n的代数式表示)【变式6-2】(2023下·山东烟台·六年级统考期末)课题学习:平行线的“等角转化”功能.(1)阅读理解:如图,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程. 解:过点A作ED∥BC,所以∠B= ,∠C= ,又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°. 解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图1,已知AB∥CD,求∠B+∠BPD+∠D的度数;(3)深化拓展:已知直线AB∥CD,点P为平面内一点,连接PA、PD.①如图2,已知∠A=50°,∠D=140°,请直接写出∠APD的度数;②如图3,请判断∠PAB、∠CDP、∠APD之间的数量关系,并说明理由. 【变式6-3】(2023下·河南商丘·七年级永城市实验中学校考期末)阅读材料:如图1,若AB//CD,则∠B+∠D=∠BED.理由:如图,过点E作EF//AB,则∠B=∠BEF.因为AB//CD,所以EF//CD,所以∠D=∠DEF,所以∠BED=∠BEF+∠DEF=∠B+∠D.交流:(1)若将点E移至图2所示的位置,AB//CD,此时∠B、∠D、∠E之间有什么关系?请说明理由.探究:(2)在图3中,AB//CD,∠E+∠G、∠B+∠F+∠D又有何关系?应用:(3)在图4中,若AB//CD,又得到什么结论?请直接写出该结论.【题型7 平行线的性质在生活中的应用】【例7】(2023下·江苏泰州·七年级统考期末)如图1是一盏可折叠台灯.图2、图3是其平面示意图,支架AB、BC为固定支撑杆,支架OC可绕点C旋转调节.已知灯体顶角∠DOE=52°,顶角平分线OP始终与OC垂直. (1)如图2,当支架OC旋转至水平位置时,OD恰好与BC平行,求支架BC与水平方向的夹角∠θ的度数;(2)若将图2中的OC绕点C顺时针旋转15°到如图3的位置,求此时OD与水平方向的夹角∠OQM的度数.【变式7-1】(2023下·湖北武汉·七年级统考期末)光在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射,如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的,若水面和杯底互相平行,且∠1=122°,则∠2= . 【变式7-2】(2023下·七年级单元测试)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,在B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,使所修路段CE//AB,求∠ECB的度数.【变式7-3】(2023下·广东广州·七年级统考期末)探照灯、汽车灯等很多灯具的光线都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=38°,∠DCO=78°,则∠BOC的度数是 °【题型8 平行线与动点的综合应用】【例8】(2023下·北京通州·七年级统考期末)已知:直线,点G为直线CD上一定点,点E是直线AB上一动点,连结EG.在EG的左侧分别作射线EM、GN,两条射线相交于点F,设.(1)当,时,如图1位置所示,求的度数(用含有的式子表示),并写出解答过程;(2)当时,过点G作EG的垂线.①请在图2中补全图形;②直接写出直线与直线CD所夹锐角的度数______(用含有的式子表示).【变式8-1】(2023下·海南省直辖县级单位·七年级统考期末)如图1,已知直线AMBG,点C为射线BG上一动点,过点C作CDAB交AM于点D,点E在线段AB上,∠DCE=90°,点F在线段AD上,∠FCG=90°,点H在线段BC上,∠AHG=90°,∠ECF=60°.(1)写出一个与∠ADC相等的角 (写一个即可);(2)如图2,求∠BCD的度数;(3)若点F是直线AM上的一点,点H是直线BG上的一点,在点C的运动过程中(点C不与点B、H重合),求∠BAF的度数.【变式8-2】(2023下·湖北武汉·七年级统考期末)如图,已知,M,N分别是直线AB,CD上一点,点E在直线AB,CD之间.(1)如图1,求证:;(2)如图2,F是EM上一点,NE平分,FH平分,试探究与之间的数量关系?并证明你的结论;(3)如图3,P为直线MN上一动点(不与点N重合),过点P作交直线CD于点G,∠PNG的角平分线和∠PGC的角平分线交于点O,则∠O的度数为______(直接写出结果).【变式8-3】(2023上·黑龙江哈尔滨·七年级哈尔滨德强学校校考期中)点在射线上,点、为射线上两个动点,满足,,平分.(1)如图,当点在右侧时,求证:;(2)如图,当点在左侧时,求证:;(3)如图,在的条件下,为延长线上一点,平分,交于点,平分,交于点,连接,若,,则的度数是多少.【题型9 利用三角形的中线求面积】【例9】(2023春·贵州毕节·七年级统考期末)如图,在△ABC中,AG=BG,BD=DE=EC,CF=4AF,若四边形DEFG的面积为28,则△ABC的面积为( ) A.60 B.56 C.70 D.48【变式9-1】(2023秋·黑龙江哈尔滨·七年级校考期末)如图,在△ABC中,BF=2FD,EF=FC,若△BEF的面积为4,则四边形AEFD的面积为 .【变式9-2】(2023春·江苏连云港·七年级统考期末)如图,点C为直线AB外一动点,AB=6,连接CA、CB,点D、E分别是AB、BC的中点,连接AE、CD交于点F,当四边形BEFD的面积为5时,线段AC长度的最小值为 . 【变式9-3】(2023春·江苏盐城·七年级统考期末)【问题情境】苏科版数学课本七年级下册上有这样一道题:如图1,AD是△ABC的中线,△ABC与△ABD的面积有怎样的数量关系?小旭同学在图1中作BC边上的高AE,根据中线的定义可知BD=CD.又因为高AE相同,所以S△ABD=S△ACD,于是S△ABC=2S△ABD.据此可得结论:三角形的一条中线平分该三角形的面积. 【深入探究】(1)如图2,点D在△ABC的边BC上,点P在AD上.①若AD是△ABC的中线,求证:S△APB=S△APC;②若BD=3DC,则S△APB:S△APC=______.【拓展延伸】(2)如图3,分别延长四边形ABCD的各边,使得点A、B、C、D分别为DH、AE、BF、CG的中点,依次连结E、F、G、H得四边形EFGH.①求证:S△HDG+S△FBE=2S四边形ABCD;②若S四边形ABCD=3,则S四边形EFGH=______.【题型10 利用三角形的三边关系求线段的最值或取值范围】【例10】(2023春·河北保定·七年级统考期末)如图,∠AOB<90°,点M在OB上,且OM=6,点M到射线OA的距离为a,点P在射线OA上,MP=x.若△OMP的形状,大小是唯一确定的,则x的取值范围是( ) A.x=a或x≥6 B.x≥6 C.x=6 D.x=6或x>a【变式10-1】(2023秋·安徽合肥·七年级统考期末)不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是 【变式10-2】(2023秋·安徽·七年级期末)一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是( )A.x>5 B.x<7 C.212AB+BC+AC.(2)AB+AC+BC>OA+OB+OC.(3)若A,B,C为三个城镇,AB+AC+BC=10 km,要在ΔABC内建造供水站O向三个城镇按如图路线供水,则所需供水管长度应满足什么条件?【变式11-1】(2023春·七年级课时练习)已知a,b,c是一个三角形的三边长,化简|2a+b﹣c|﹣|b﹣2a﹣c|+|﹣a﹣b﹣2c|.【变式11-2】(2023春·全国·七年级专题练习)如图1,点P是△ABC内部一点,连接BP,并延长交AC于点D.(1)试探究AB+BC+CA与2BD的大小关系;(2)试探究AB+AC与PB+PC的大小关系;(3)如图2,点D,E是△ABC内部两点,试探究AB+AC与BD+DE+CE的大小关系.【变式11-3】(2023春·六年级单元测试)如图,草原上有四口油井,位于四边形ABCD的四个顶点上,现在要建立一个维修站H,试问H建在何处,才能使它到四口油井的距离之和HA+HB+HC+HD最小,说明理由【题型12 与角平分线有关的三角形角的计算问题】【例12】(2023春·江苏苏州·七年级太仓市第一中学校考期中)如图1,在△ABC中,BD平分∠ABC,CD平分∠ACB.(1)若∠A=60°,则∠BDC的度数为_________;(2)若∠A=α,直线MN经过点D.①如图2,若MN∥AB,求∠NDC-∠MDB的度数(用含α的代数式表示);②如图3,若MN绕点D旋转,分别交线段BC,AC于点M,N,试问旋转过程中∠NDC-∠MDB的度数是否会发生改变?若不变,求出∠NDC-∠MDB的度数(用含α的代数式表示),若改变,请说明理由;③如图4,继续旋转直线MN,与线段AC交于点N,与CB的延长线交于点M,请直接写出∠NDC与∠MDB的关系(用含α的代数式表示).【变式12-1】(2023秋·河南漯河·七年级校考期中)(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)如果图2中,∠D=40°,∠B=36°,AP与CP分别是∠DAB和∠DCB的角平分线,试求∠P的度数;(3)如果图2中∠D和∠B为任意角,其他条件不变,试问∠P与∠D,∠B之间存在着怎样的数量关系(直接写出结论即可).【变式12-2】(2023春·江苏扬州·七年级校联考期中)∠MON=90°,点A,B分别在OM、ON上运动(不与点O重合).(1)如图①,AE、BE分别是∠BAO和∠ABO的平分线,随着点A、点B的运动,当AO=BO时∠AEB= °;(2)如图②,若BC是∠ABN的平分线,BC的反向延长线与∠OAB的平分线交于点D,随着点A,B的运动∠D的大小会变吗?如果不会,求∠D的度数;如果会,请说明理由;(3)如图③,延长MO至Q,延长BA至G,已知∠BAO,∠OAG的平分线与∠BOQ的平分线及其延长线相交于点E、F,在△AEF中,如果有一个角是另一个角的3倍,求∠ABO的度数.【变式12-3】(2023秋·安徽宣城·七年级校考期中)如图1,∠MON=90°,点A、B分别在OM、ON上运动(不与点O重合).(1)若BC是∠ABN的平分线,BC的反方向延长线与∠BAO的平分线交于点D.①若∠BAO=60°,则∠D=______°;②猜想:∠D的度数是否随A,B的移动发生变化?并说明理由.(2)如图2,若∠OAD=35∠OAB,∠NBC=35∠NBA,则∠D=______°;(3)若将∠MON=90°改为∠MON=120°(如图3),∠OAD=mn∠OAB,∠NBC=mn∠NBA,其余条件不变,则∠D=______(用含m,n的代数式表示,其中m
专题7.18 平面图形的认识(二)章末十四大题型总结(拔尖篇)【苏科版】TOC \o "1-3" \h \u HYPERLINK \l "_Toc1434" 【题型1 平行线在三角板中的运用】 PAGEREF _Toc1434 \h 1 HYPERLINK \l "_Toc2145" 【题型2 平行线在折叠中的运用】 PAGEREF _Toc2145 \h 3 HYPERLINK \l "_Toc29193" 【题型3 旋转使平行】 PAGEREF _Toc29193 \h 4 HYPERLINK \l "_Toc10893" 【题型4 利用平行线求角度之间的关系】 PAGEREF _Toc10893 \h 5 HYPERLINK \l "_Toc32318" 【题型5 利用平行线解决角度定值问题】 PAGEREF _Toc32318 \h 8 HYPERLINK \l "_Toc12899" 【题型6 平行线的阅读理解类问题】 PAGEREF _Toc12899 \h 10 HYPERLINK \l "_Toc21370" 【题型7 平行线的性质在生活中的应用】 PAGEREF _Toc21370 \h 12 HYPERLINK \l "_Toc5653" 【题型8 平行线与动点的综合应用】 PAGEREF _Toc5653 \h 13 HYPERLINK \l "_Toc335" 【题型9 利用三角形的中线求面积】 PAGEREF _Toc335 \h 15 HYPERLINK \l "_Toc30831" 【题型10 利用三角形的三边关系求线段的最值或取值范围】 PAGEREF _Toc30831 \h 17 HYPERLINK \l "_Toc13015" 【题型11 利用三角形的三边关系化简或证明】 PAGEREF _Toc13015 \h 17 HYPERLINK \l "_Toc1460" 【题型12 与角平分线有关的三角形角的计算问题】 PAGEREF _Toc1460 \h 18 HYPERLINK \l "_Toc8850" 【题型13 与平行线有关的三角形角的计算问题】 PAGEREF _Toc8850 \h 20 HYPERLINK \l "_Toc30853" 【题型14 与折叠有关的三角形角的计算问题】 PAGEREF _Toc30853 \h 22【题型1 平行线在三角板中的运用】【例1】(2023下·浙江温州·七年级校考期中)将一副直角三角板如图1,摆放在直线MN上(直角三角板ABC和直角三角板EDC,∠EDC=90°,∠DEC=60°,∠ABC=90°,∠BAC=45°),保持三角板EDC不动,将三角板ABC绕点C以每秒5°的速度,顺时针方向旋转,旋转时间为t秒,当AC与射线CN重合时停止旋转. (1)如图2,当AC为∠DCE的角平分线时,直接写出此时t的值;(2)当AC旋转至∠DCE的内部时,求∠DCA与∠ECB的数量关系.(3)在旋转过程中,当三角板ABC的其中一边与ED平行时,请直接写出此时t的值.【变式1-1】(2023下·河南安阳·七年级统考期末)如图1,将一副三角板中的两个直角顶点C叠放在一起,其中∠A=30°,∠B=60°,∠D=∠E=45°.(1)观察猜想,∠BCD与∠ACE的数量关系是________;∠BCE与∠ACD的数量关系是________;(2)类比探究,若按住三角板ABC不动,顺时针绕直角顶点C转动三角形DCE,试探究当∠ACD等于多少度时CE//AB,画出图形并简要说明理由;(3)拓展应用,若∠BCE=3∠ACD,求∠ACD的度数;并直接写出此时DE与AC的位置关系.【变式1-2】(2023上·湖南长沙·七年级校考期末)如图,两个形状,大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)①如图1,∠DPC= 度.②我们规定,如果两个三角形只要有一组边平行,我们就称这两个三角形为“孪生三角形”,如图1,三角板BPD不动,三角板PAC从图示位置开始每秒10°逆时针旋转一周(0°<旋转<360°),问旋转时间t为多少时,这两个三角形是“孪生三角形”.(2)如图3,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速3°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速2°/秒,在两个三角板旋转过程中,(PC转到与PM重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,以下两个结论:①∠CPD∠BPN为定值;②∠BPN+∠CPD为定值,请选择你认为对的结论加以证明.【变式1-3】(2023上·福建泉州·七年级统考期末)如图1,将三角板ABC与三角板ADE摆放在一起,其中∠ACB=30°,∠DAE=45°,∠BAC=∠D=90°,固定三角板ABC,将三角板ADE绕点A按顺时针方向旋转,当点E落在射线AC的反向延长线上时,即停止旋转.(1)如图2,当边AC落在∠DAE内,①∠CAD与∠BAE之间存在怎样的数量关系?试说明理由;②过点A作射线AF,AG,若∠CAF=13∠CAD,∠BAG=14∠EAG,求∠FAG的度数;(2)设△ADE的旋转速度为3°/秒,旋转时间为t,若它的一边与△ABC的某一边平行(不含重合情况),试写出所有符合条件的t的值.【题型2 平行线在折叠中的运用】【例2】(2023下·浙江温州·七年级校联考期中)如图,已知长方形纸片ABCD,点E和点F分别在边AD和BC上,且∠EFC=37°,点H和点G分别是边AD和BC上的动点,现将点A,B,C,D分别沿EF,GH折叠至点N,M,P,K,若MN∥PK,则∠KHD的度数为( )A.37°或143° B.74°或96° C.37°或105° D.74°或106°【变式2-1】(2023下·福建宁德·七年级统考期末)如图,将一条长方形彩带ABCD进行两次折叠,先沿折痕MN向上折叠,再沿折痕AM向背面折叠,若要使两次折叠后彩带的夹角∠2=26°,则第一次折叠时∠1应等于 °. 【变式2-2】(2023下·浙江温州·七年级温州市第十二中学校联考期中)已知M,N分别是长方形纸条ABCD边AB,CD上两点(AM>DN),如图1所示,沿M,N所在直线进行第一次折叠,点A,D的对应点分别为点E,F,EM交CD于点P;如图2所示,继续沿PM进行第二次折叠,点B,C的对应点分别为点G,H,若∠1=∠2,则∠CPM的度数为( ) A.74° B.72° C.70° D.68°【变式2-3】(2023下·河南南阳·七年级统考期末)如图,已知四边形纸片ABCD的边AB∥CD,E是边CD上任意一点,△BCE沿BE折叠,点C落在点F的位置. (1)观察发现:如图①所示:∠C=60°,∠FED=45°,则∠ABF=______.(2)拓展探究:如图②,点F落在四边形ABCD的内部,探究∠FED,∠ABF,∠C之间的数量关系,并证明;(3)迁移应用:如图③,点F落在边CD的上方,则(2)中的结论是否成立?若成立,请证明:若不成立,请写出它们的数量关系并证明.【题型3 旋转使平行】【例3】(2023下·江苏苏州·七年级统考期末)在一次课外活动中,小明将一副直角三角板如图放置,E在AC上, ,,.小明将ADE从图中位置开始,绕点按每秒的速度顺时针旋转一周,在旋转过程中,第 秒时,边与边平行.【变式3-1】(2023下·河北唐山·七年级统考期末)如图,分别将木条a,b与固定的木条c钉在一起,,,顺时针转动木条a,下列选项能使木条a与b平行的是( ) A.旋转30° B.旋转50° C.旋转80° D.旋转130°【变式3-2】(2023下·安徽六安·七年级统考期末)两块不同的三角板按如图1所示摆放,边与边重合,,接着如图2保持三角板不动,将三角板绕着点(点不动)按顺时针(如图标示方向)旋转,在旋转的过程中,逐渐增大,当第一次等于时,停止旋转,在此旋转过程中, 时,三角板有一条边与三角板的一条边恰好平行. 【变式3-3】(2023下·河北唐山·七年级统考期中)如图(1),在三角形ABC中,,BC边绕点C按逆时针方向旋转一周回到原来的位置.在旋转的过程中(图(2),使,则( )A. B. C.或 D.或【题型4 利用平行线求角度之间的关系】【例4】(2023下·广东广州·七年级统考期末)点A,C,E在直线l上,点B不在直线l上,把线段AB沿直线l向右平移得到线段CD.(1)如图1,若点E在线段AC上,求证:∠B+∠D=∠BED;(2)若点E不在线段AC上,试猜想并证明∠B,∠D,∠BED之间的等量关系;(3)在(1)的条件下,如图2所示,过点B作PB//ED,在直线BP,ED之间有点M,使得∠ABE=∠EBM,∠CDE=∠EDM,同时点F使得∠ABE=n∠EBF,∠CDE=n∠EDF,其中n≥1,设∠BMD=m,利用(1)中的结论求∠BFD的度数(用含m,n的代数式表示).【变式4-1】(2023下·广东广州·七年级统考期末)甲同学在学完《相交线与平行线》后,想通过折铁丝的方式进一步探索相交线与平行线的知识,他的具体操作步骤如下:第一步:将一根铁丝AB在C,D,E处弯折得到如下图①的形状,其中AC∥DE,CD∥BE.第二步:将DE绕点D旋转一定角度,再将BE绕点E旋转一定角度并在BE上某点F处弯折,得到如下图②的形状.第三步:再拿出另外一根铁丝弯折成∠G,跟前面弯折的铁丝叠放成如下图③的形状.请根据上面的操作步骤,解答下列问题:(1)如图①,若∠C=2∠D,求∠E;(2)如图②,若AC∥BF,请判断∠C,∠D,∠E,∠F之间的数量关系,并说明理由;(3)在(2)的条件下,如图③,若∠ACD=3∠DCG,∠DEF=3∠DEG,设∠D=x,∠F=y,求∠G.(用含x,y的式子表示)【变式4-2】(2023下·安徽·七年级统考期末)如图,直线m∥n,Rt△ABC中∠ACB=90°,Rt△ABC的边AC、AB与直线m相交于D、E两点,边BC、AB与直线n交于F、G两点. (1)将Rt△ABC如图1位置摆放,如果∠ADE=46°,则∠CFG=______;(2)将Rt△ABC如图2位置摆放,H为AC上一点,∠HFG+∠CFG=180°,请写出∠HFG与∠ADE之间的数量关系,并说明理由;(3)将Rt△ABC如图3位置摆放,若∠EDC=140°,延长AC交直线n于点K,点P是射线EG上一动点,探究∠PDK,∠DPK与∠PKG的数量关系,请直接写出结论(题中的所有角都大于0°小于180°).【变式4-3】(2023下·湖北武汉·七年级统考期末)【问题情境】如图1,AB∥CD,直线EG交AB于点H,交CD于点G,点F在直线AB上.直接写出∠E,∠EFH,∠EGD之间的数量关系为 . 【实践运用】如图2,AB∥CD,直线EG交AB于点H,交CD于点G,点F在直线AB上.FT平分∠EFH,GM平分∠EGC,若∠E=40°,求∠FMG的度数. 【拓广探索】如图3,AB∥CD,直线EG交AB于点H,交CD于点G,点P为平面内不在直线AB,CD,EG上的一点,若∠BHP=x,∠DGP=y,则∠HPG= (直接写出答案,用x,y表示). 【题型5 利用平行线解决角度定值问题】【例5】(2023下·河南商丘·七年级统考期末)已知 AB∥CD,P是截线MN上的一点,MN与CD,AB分别交于E,F. (1)如图(1),P在AB、CD之间,若∠EFB=50°,∠EDP=35°,求∠MPD的度数;(2)如图(1),当点P在线段EF上运动时,∠CDP与∠ABP的平分线交于Q,则∠Q∠DPB是否为定值?若是定值,请求出定值;若不是,说明其范围;(3)如图(2),当点P在线段FE的延长线上运动时,∠CDP与∠ABP的平分线交于Q,∠Q∠DPB的值是否为定值?若是,求出定值,若不是,请说明理由.【变式5-1】(2023下·福建龙岩·七年级校考阶段练习)如图1,点A、D分别在射线BM、CN线上,BM∥CN,BM⊥BC于点B,AE平分∠BAD交BC于点E,连接DE,∠1+∠2=90°. (1)求证:AE⊥ED;(2)求证:DE平分∠ADC;(3)如图2,∠EAM和∠EDN的平分线交于点F,试猜想∠F的值是否为定值,若是,请予以证明;若不是,请说明理由.【变式5-2】(2023下·河北保定·七年级统考期末)如图1,已知∠EFH=90°,点A,C分别在射线FE和FH上,在∠EFH内部作射线AB,CD,使AB平行于CD.(1)如图1,若FAB=150°,求∠HCD的度数;(2)小颖发现,在∠EFH内部,无论FAB如何变化,∠FAB-∠HCD的值始终为定值,请你结合图2求出这一定值;(3)①如图3,把图1中的∠EFH=90°改为∠EFH=120°,其他条件不变,请直接写出∠FAB与∠HCD之间的数量关系;②如图4,已知∠EFG+∠FGC=α,点A,C分别在射线FE,GH上,在∠EFG与∠FGH内部作射线AB,CD,使AB平行于CD,请直接写出∠FAB与∠HCD之间的数量关系.【变式5-3】(2023下·湖北武汉·七年级统考期末)如图1,已知直线l1∥l2,点A、B在直线l1上,点C、D在l2上,线段AD交线段BC于点E,且∠BED=60°.(1)求证:∠ABE+∠EDC=60°;(2)如图2,当F、G分别在线段AE、EC上,且∠ABF=2∠FBE,∠EDG=2∠GDC,标记∠BFE为∠1,∠BGD为∠2.①若∠1-∠2=16°,求∠ADC的度数;②当k=________时,k∠1+∠2为定值,此时定值为________.【题型6 平行线的阅读理解类问题】【例6】(2023下·江苏泰州·七年级泰州市海军中学校考阶段练习)【注重阅读理解】阅读以下材料:已知点B,D分别在AK和CF上,且CF∥AK.(1)如图1,若∠CDE=22°,∠DEB=75°,则∠ABE的度数为______;(2)如图2,BG平分∠ABE,GB延长线与∠EDF的平分线交于H点,若∠DEB比∠DHB大60°,求∠DEB的度数.(3)保持(2)中所求的∠DEB的度数不变,如图3,BM平分∠EBK,DN平分∠CDE,作BP∥DN,则∠PBM的度数是否改变?若不变,请求值;若改变,请说明理由.【变式6-1】(2023下·湖北孝感·七年级统考期末)[课题学习]:平行线的“等角转化”功能. [阅读理解]:如图1,已知点A是BC外一点,连接AB,AC,求∠BAC+∠B+∠C的度数.(1)阅读并补充下面推理过程.解:过点A作ED∥BC,所以∠B=_________,∠C=__________, 又因为∠EAB+∠BAC+∠DAC=180°所以∠B+∠BAC+∠C=180°.[解题反思]:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC,∠B,∠C “凑”在一起,得到角的关系,使问题得到解决.[方法运用]:(2)如图2,已知AB∥ED,求∠B+∠BCD+∠D的度数.[深化拓展]:(3)已知AB∥CD,点C在D的右侧,∠ADC=70°,BE平分∠ABC,DE平分∠ADC,BE,DE所在的直线交于点E,点E在AB与CD两条平行线之间.①如图3,若∠ABC=60°,则∠BED=__________°;②如图4,点B在点A的右侧,若∠ABC=n°,则∠BED=________°.(用含n的代数式表示)【变式6-2】(2023下·山东烟台·六年级统考期末)课题学习:平行线的“等角转化”功能.(1)阅读理解:如图,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程. 解:过点A作ED∥BC,所以∠B= ,∠C= ,又因为∠EAB+∠BAC+∠DAC=180°,所以∠B+∠BAC+∠C=180°. 解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.(2)方法运用:如图1,已知AB∥CD,求∠B+∠BPD+∠D的度数;(3)深化拓展:已知直线AB∥CD,点P为平面内一点,连接PA、PD.①如图2,已知∠A=50°,∠D=140°,请直接写出∠APD的度数;②如图3,请判断∠PAB、∠CDP、∠APD之间的数量关系,并说明理由. 【变式6-3】(2023下·河南商丘·七年级永城市实验中学校考期末)阅读材料:如图1,若AB//CD,则∠B+∠D=∠BED.理由:如图,过点E作EF//AB,则∠B=∠BEF.因为AB//CD,所以EF//CD,所以∠D=∠DEF,所以∠BED=∠BEF+∠DEF=∠B+∠D.交流:(1)若将点E移至图2所示的位置,AB//CD,此时∠B、∠D、∠E之间有什么关系?请说明理由.探究:(2)在图3中,AB//CD,∠E+∠G、∠B+∠F+∠D又有何关系?应用:(3)在图4中,若AB//CD,又得到什么结论?请直接写出该结论.【题型7 平行线的性质在生活中的应用】【例7】(2023下·江苏泰州·七年级统考期末)如图1是一盏可折叠台灯.图2、图3是其平面示意图,支架AB、BC为固定支撑杆,支架OC可绕点C旋转调节.已知灯体顶角∠DOE=52°,顶角平分线OP始终与OC垂直. (1)如图2,当支架OC旋转至水平位置时,OD恰好与BC平行,求支架BC与水平方向的夹角∠θ的度数;(2)若将图2中的OC绕点C顺时针旋转15°到如图3的位置,求此时OD与水平方向的夹角∠OQM的度数.【变式7-1】(2023下·湖北武汉·七年级统考期末)光在不同介质中的传播速度不同,因此当光线从空气射向水中时,会发生折射,如图,在空气中平行的两条入射光线,在水中的两条折射光线也是平行的,若水面和杯底互相平行,且∠1=122°,则∠2= . 【变式7-2】(2023下·七年级单元测试)如图,某工程队从A点出发,沿北偏西67°方向修一条公路AD,在BD路段出现塌陷区,就改变方向,在B点沿北偏东23°的方向继续修建BC段,到达C点又改变方向,使所修路段CE//AB,求∠ECB的度数.【变式7-3】(2023下·广东广州·七年级统考期末)探照灯、汽车灯等很多灯具的光线都与平行线有关,如图所示是一探照灯碗的剖面,从位于O点的灯泡发出的两束光线OB,OC,经灯碗反射以后平行射出,其中∠ABO=38°,∠DCO=78°,则∠BOC的度数是 °【题型8 平行线与动点的综合应用】【例8】(2023下·北京通州·七年级统考期末)已知:直线,点G为直线CD上一定点,点E是直线AB上一动点,连结EG.在EG的左侧分别作射线EM、GN,两条射线相交于点F,设.(1)当,时,如图1位置所示,求的度数(用含有的式子表示),并写出解答过程;(2)当时,过点G作EG的垂线.①请在图2中补全图形;②直接写出直线与直线CD所夹锐角的度数______(用含有的式子表示).【变式8-1】(2023下·海南省直辖县级单位·七年级统考期末)如图1,已知直线AMBG,点C为射线BG上一动点,过点C作CDAB交AM于点D,点E在线段AB上,∠DCE=90°,点F在线段AD上,∠FCG=90°,点H在线段BC上,∠AHG=90°,∠ECF=60°.(1)写出一个与∠ADC相等的角 (写一个即可);(2)如图2,求∠BCD的度数;(3)若点F是直线AM上的一点,点H是直线BG上的一点,在点C的运动过程中(点C不与点B、H重合),求∠BAF的度数.【变式8-2】(2023下·湖北武汉·七年级统考期末)如图,已知,M,N分别是直线AB,CD上一点,点E在直线AB,CD之间.(1)如图1,求证:;(2)如图2,F是EM上一点,NE平分,FH平分,试探究与之间的数量关系?并证明你的结论;(3)如图3,P为直线MN上一动点(不与点N重合),过点P作交直线CD于点G,∠PNG的角平分线和∠PGC的角平分线交于点O,则∠O的度数为______(直接写出结果).【变式8-3】(2023上·黑龙江哈尔滨·七年级哈尔滨德强学校校考期中)点在射线上,点、为射线上两个动点,满足,,平分.(1)如图,当点在右侧时,求证:;(2)如图,当点在左侧时,求证:;(3)如图,在的条件下,为延长线上一点,平分,交于点,平分,交于点,连接,若,,则的度数是多少.【题型9 利用三角形的中线求面积】【例9】(2023春·贵州毕节·七年级统考期末)如图,在△ABC中,AG=BG,BD=DE=EC,CF=4AF,若四边形DEFG的面积为28,则△ABC的面积为( ) A.60 B.56 C.70 D.48【变式9-1】(2023秋·黑龙江哈尔滨·七年级校考期末)如图,在△ABC中,BF=2FD,EF=FC,若△BEF的面积为4,则四边形AEFD的面积为 .【变式9-2】(2023春·江苏连云港·七年级统考期末)如图,点C为直线AB外一动点,AB=6,连接CA、CB,点D、E分别是AB、BC的中点,连接AE、CD交于点F,当四边形BEFD的面积为5时,线段AC长度的最小值为 . 【变式9-3】(2023春·江苏盐城·七年级统考期末)【问题情境】苏科版数学课本七年级下册上有这样一道题:如图1,AD是△ABC的中线,△ABC与△ABD的面积有怎样的数量关系?小旭同学在图1中作BC边上的高AE,根据中线的定义可知BD=CD.又因为高AE相同,所以S△ABD=S△ACD,于是S△ABC=2S△ABD.据此可得结论:三角形的一条中线平分该三角形的面积. 【深入探究】(1)如图2,点D在△ABC的边BC上,点P在AD上.①若AD是△ABC的中线,求证:S△APB=S△APC;②若BD=3DC,则S△APB:S△APC=______.【拓展延伸】(2)如图3,分别延长四边形ABCD的各边,使得点A、B、C、D分别为DH、AE、BF、CG的中点,依次连结E、F、G、H得四边形EFGH.①求证:S△HDG+S△FBE=2S四边形ABCD;②若S四边形ABCD=3,则S四边形EFGH=______.【题型10 利用三角形的三边关系求线段的最值或取值范围】【例10】(2023春·河北保定·七年级统考期末)如图,∠AOB<90°,点M在OB上,且OM=6,点M到射线OA的距离为a,点P在射线OA上,MP=x.若△OMP的形状,大小是唯一确定的,则x的取值范围是( ) A.x=a或x≥6 B.x≥6 C.x=6 D.x=6或x>a【变式10-1】(2023秋·安徽合肥·七年级统考期末)不等边△ABC的两条高的长度分别为4和12,若第三条高也为整数,那么它的长度最大值是 【变式10-2】(2023秋·安徽·七年级期末)一个三角形的两边长分别为5和7,设第三边上的中线长为x,则x的取值范围是( )A.x>5 B.x<7 C.2
相关资料
更多