2024年高考押题预测模拟测试卷02(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用)
展开
这是一份2024年高考押题预测模拟测试卷02(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共5页。试卷主要包含了已知复数,其中为虚数单位,则,某校高三,函数在区间上的图象大致为等内容,欢迎下载使用。
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.已知复数,其中为虚数单位,则
A.B.2C.D.1
2.设全集,则图中阴影部分所表示的集合为( )
A.B.C.D.
3.某校高三(1)班(45人)和高三(2)班(30人)进行比赛,按照分层抽样的方法从两个班共抽取10名同学,相关统计情况如下:高三(1)班答对题目的平均数为,方差为;高三(2)班答对题目的平均数为,方差为,则这10人答对题目的方差为( )
A.B.C.D.
4.已知点,,,,则与向量同方向的单位向量为( )
A.B.
C.D.
5.已知数列为等比数列,是函数的极值点,设等差数列的前项和为,若,则( )
A.或B.C.D.2
6.函数在区间上的图象大致为( )
A.B.
C.D.
7.如图圆柱的底面半径为1,母线长为6,以上下底面为大圆的半球在圆柱内部,现用一垂直于轴截面的平面去截圆柱,且与上下两半球相切,求截得的圆锥曲线的离心率为( )
A.B.C.D.3
8.已知为函数图象上一动点,则的最大值为( )
A.B.C.1D.
二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.
9.中国茶文化博大精深,茶水的口感与茶叶类型和水的温度有关.为了建立茶水温度随时间变化的回归模型,小明每隔1分钟测量一次茶水温度,得到若干组数据,,…,(其中,),绘制了如图所示的散点图.小明选择了如下2个回归模型来拟合茶水温度随时间的变化情况,回归模型一:;回归模型二:,下列说法正确的是( ).
A.茶水温度与时间这两个变量负相关
B.由于水温开始降得快,后面降得慢,最后趋于平缓,因此模型二能更好的拟合茶水温度随时间的变化情况
C.若选择回归模型二,利用最小二乘法求得到的图象一定经过点
D.当时,通过回归模型二计算得,用温度计测得实际茶水温度为65.2,则残差为
10.直三棱柱,中,,,点D是线段上的动点(不含端点),则以下正确的是( )
A.AC∥平面
B.CD与不垂直
C.∠ADC的取值范围为
D.的最小值为
11.在平面直角坐标系中,双曲线:的下、上焦点分别是,,渐近线方程为,为双曲线上任意一点,平分,且,,则( )
A.双曲线的离心率为
B.双曲线的方程为
C.若直线与双曲线的另一个交点为,为的中点,则
D.点到两条渐近线的距离之积为
三、填空题:本题共3小题,每小题5分,共15分.
12.在的展开式中,项的系数为 .
13.已知抛物线的焦点为,准线为,过的直线与抛物线交于点A、B,与直线交于点D,若且,则 .
14.有个编号分别为1,2,…,n的盒子,第1个盒子中有2个白球1个黑球,其余盒子中均为1个白球1个黑球,现从第1个盒子中任取一球放入第2个盒子,再从第2个盒子中任取一球放入第3个盒子,以此类推,则从第2个盒子中取到白球的概率是 ,从第个盒子中取到白球的概率是 .
四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.
15.在中,角A,B,C所对的边分别为a,b,c,且满足.
(1)求A;
(2)若D为边BC上一点,且,试判断的形状.
16.如图,在四棱锥中,底面ABCD是平行四边形,,,,.
(1)证明:
(2)若平面平面PCD,且,求直线AC与平面PBC所成角的正弦值.
17.近年来,短视频作为以视频为载体的聚合平台,社交属性愈发突出,在用户生活中覆盖面越来越广泛,针对短视频的碎片化缺陷,将短视频剪接成长视频势必成为一种新的技能.某机构在网上随机对1000人进行了一次市场调研,以决策是否开发将短视频剪接成长视频的APP,得到如下数据:
其中的数据为统计的人数,已知被调研的青年人数为400.
(1)求的值;
(2)根据小概率值的独立性检验,分析对短视频剪接成长视频的APP的需求,青年人与中老年人是否有差异?
参考公式:,其中.
临界值表:
18.已知椭圆的离心率与双曲线的离心率互为倒数,短轴长为.
(1)求椭圆C的标准方程;
(2)设直线l与椭圆C相切于点A,A关于原点O的对称点为点B,过点B作,垂足为M,求面积的最大值.
19.已知函数,对于数列,若,则称为函数的“生成数列”,为函数的一个“源数列”.
(1)已知 为函数的“生成数列”,为函数的“源数列”,求;
(2)已知为函数的“源数列”,求证:对任意正整数,均有;
(3)已知为函数的“生成数列”,为函数的“源数列”, 与的公共项按从小到大的顺序构成数列,试问在数列中是否存在连续三项构成等比数列?请说明理由.
青年人
中年人
老年人
对短视频剪接成长视频的APP有需求
200
对短视频剪接成长视频的APP无需求
150
0.1
0.05
0.01
0.005
0.001
2.706
3.841
6.635
7.879
10.828
相关试卷
这是一份押题02 第19题 压轴新题型综合(十一大题型)(原卷版)-冲刺2024年高考数学考点押题模拟预测卷(新高考专用),共10页。试卷主要包含了设p为实数,是在S关联的,具有A性质等内容,欢迎下载使用。
这是一份冲刺2023年高考数学考点押题模拟预测卷05(新高考全国Ⅰ卷)(原卷版),共7页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。
这是一份冲刺2023年高考数学考点押题模拟预测卷02(新高考全国Ⅰ卷)(原卷版),共6页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。