2024北京中考名校密题:数学最后冲刺30题-数与式-有理数运算
展开1. 党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为( )
2. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进本甲种书和本乙种书,共付款元.
(1)用含,的代数式表示;
(2)若共购进本甲种书及本乙种书,用科学记数法表示的值.
3. 已知,数轴上A,B,C三点对应的有理数分别为a,b,c.其中点A在点B左侧,A,B两点间的距离为2,且a,b,c满足,则a=____.对数轴上任意一点P,点P对应数x,若存在x使的值最小,则x的值为_________.
4. 现在有三个仓库、、,分别存有吨、吨、吨某原材料;要将这种原材料运往三个加工厂、、,每个加工厂都需要吨原材料.从每个仓库运送吨材料到每个加工厂的成本如下表所示(单位:元吨):
现在要让每个仓库清仓、每个加工厂都得到足够的材料,
(1)如果从运吨到、运吨到,从运吨到,那么从需要运__________吨到;
(2)考虑各种方案,运费最低为__________元.
5. 地处北京怀柔科学城的“北京光源”()是我国第一台高能同步辐射光源,在施工时严格执行“防微振动控制”的要求,控制精度级别达到纳米(nm)级.1nmm.将用科学记数法表示应为( )
6. “说不完的”探究活动,根据各探究小组的汇报,完成下列问题.
(1)到底有多大?
下面是小欣探索的近似值的过程,请补充完整:
我们知道面积是2的正方形边长是,且.设,画出如下示意图.
由面积公式,可得______.
因为值很小,所以更小,略去,得方程______,解得____(保留到0.001),即_____.
(2)怎样画出?请一起参与小敏探索画过程.
现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小敏同学的做法是:设新正方形的边长为.依题意,割补前后图形的面积相等,有,解得.把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形.
请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.
7. 下面是小明和小乐在学习有理数运算后的一段对话.
请你完成下面的运算,并填写运算过程中的依据
解:3-5
=3+( )(依据: )
=-( -3)
= .
8. 点M,N在数轴上的位置如图所示,点M,N表示的有理数为a,b.如果,那么下列描述数轴原点的位置说法正确的是( )
9. 为落实生态文明建设,推动绿色发展,促进人与自然和谐共生,某公司装修采用同质地的型、型环保板材,具体要求如下:
现只能购得规格为的符合质地要求的标准板材,一张标准板材尽可能多地裁出型、型板材,裁法如下(损耗忽略不计):
上表中的值为_______;公司需购入标准板材至少_______张.
10. 甲、乙两人分别在A,B两条生产线上加工零件,在A生产线,甲、乙均是每天最少可以加工2个A零件.当连续生产时,甲第一天能加工10个A零件,每连续加工一天,加工的零件数比前一天少2个;乙第一天能加工8个A零件,每连续加工一天,加工的零件数比前一天少1个.在B生产线,甲每天加工7个B零件,乙每天加工8个B零件.在同一天内,甲和乙不能在同一条生产线上工作,且在一条生产线连续工作不少于3天时可改变生产线,改变生产线后加工时间重新计算.根据题意,得:
(1)甲在A生产线连续工作3天最多能加工A零件______个;
(2)若一个A零件、一个B零件组成一套产品,则14天最多能加工______套产品.
11. 从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为( )
12. 小东对有理数定义了一种新的运算,叫做“乘减法”,记作“”.他写出了一些按照“乘减法”运算的算式:,,,,,,,,,.
小玲看了这些算式后说:“我明白你定义的乘减法法则了.”她将法则整理出来给小东看,小东说:“你的理解完全正确.”
(1)请将下面小玲整理的“乘减法”法则补充完整:
绝对值不相等的两数相“乘减”,同号得______,异号得______,并______;绝对值相等的两数相“乘减”,都得0;一个数与0相“乘减”,或0与一个数相“乘减”,都得这个数的绝对值.
(2)若括号的作用与它在有理数运算中的作用相同,
用“乘减法”计算:______.
小东发现交换律在有理数的“乘减法”中仍然成立,即.但是结合律在有理数的“乘减法”中不一定成立,请你举一个例子说明不成立.
13. 某校计划租用甲,乙,丙三种型号客车送师生去综合实践基地开展活动.每种型号客车的载客量及租金如下表所示:
其中租用甲型客车有优惠活动:租用三辆或三辆以上每辆客车的租金打8折.现有280名师生需要前往综合实践基地,要求每种型号的客车至少租1辆,且每辆车都坐满.
(1)如果甲,乙,丙三种型号客车的租用数量分别是2,4,3,那么租车的总费用为______元;
(2)如果租车的总费用最低,那么甲,乙,丙三种型号客车的租用数量可以分别是______.
14. 干支纪年法是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称.干支纪年法的组合方式是天干在前,地支在后,以十天干和十二地支循环配合,每个组合代表﹣﹣年,年为一个循环.我们把天干、地支按顺序排列,且给它们编上序号.天干的计算方法是:年份减3,除以所得的余数;地支的计算方法是:年份减3,除以所得的余数.以年为例:天干为:;地支为:;对照天干地支表得出,年为农历壬寅年.
请你依据上述规律推断年为农历 ___________年.
15. 京张高铁,京礼高速两条北京冬奥会重要交通保障设施投入使用后,将张家口、崇礼、延庆与北京城区串成一线.京张高铁开通运营一年累计发送旅客6 800 000人,大幅提升了京张两地通行能力,将6 800 000用科学记数法表示为( )
16. 在数轴上,把原点记作点O,表示数1的点记作点A.对于数轴上任意一点P(不与点O,点A重合),将线段与线段的长度之比定义为点P的特征值,记作.即.例如:当点P是线段的中点时,因为,所以.
(1)如图,点,,为数轴上三个点,点表示的数是,点与关于原点对称.
①______;
②比较,,的大小______(用“<”连接);
(2)数轴上的点M满足,求;
(3)数轴上的点P表示有理数p,已知且为整数,则所有满足条件的p的倒数之和为______.
17. 年技术正式开始商用,它的数据下载的最高速率从初期的提升到,给我们的智慧生活“提速”.其中表示每秒传输 位()的数据. 将用科学记数法表示应为( )
18. 目前,某城市“一户一表”居民用电实行阶梯电价,具体收费标准如下.
(1)若该市某户12月用电量为200度,该户应交电费_________元;
(2)若该市某户12月用电量为x度,请用含x的代数式分别表示和时该户12月应交电费多少元;
(3)若该市某户12月应交电费125元,则该户12月用电量为多少度?
19. 为了鼓励本次模拟练习取得进步的同学,某班决定给该部分同学发放奖品,学习用品商店为了提高营业额,将商品打包促销(每个大礼包限购1个),老师发现了编号分别为,,,,,的六个大礼包中均含有老师需要的一、二、三等奖的奖品,每个大礼包中的各类奖品数量如下:
该班需要的总的奖品个数不超过41个,且一等奖的个数不少于8个,不超过14个,二等奖的个数不少于7个,不超过13个,且三等奖的个数最多,请同学们帮助老师写出满足条件的购买方案____________(写出要购买的大礼包编号)
20. 小明观看了纸牌魔术表演,非常感兴趣,并做了如下实验和探究:
将几张纸牌摞起来(从上面分别记为第1张,第2张,第3张),先将第1张牌放到整摞牌的下面,再去掉第2张牌;继续将第3张牌放在整摞牌的下面,再去掉第4张牌……如此循环往复,最终到只留下一张纸牌为止.例如,若将4张纸牌摞起来,按上述规则操作,陆续去掉第2张,第4张,第3张,最终留下第1张纸牌.将8张纸牌摞起来,按上述规则操作,最终留下的是第________张纸牌;将m张纸牌摞起来,按上述规则操作,若最终留下的是第1张纸牌,则________(用含n的代数式表示,其中n为自然数).
21. 2022年6月5日,中华民族再探苍穹,神舟十四号载人飞船通过长征二号F运载火箭成功升空,并与天和核心舱顺利进行接轨.据报道,长征二号F运载火箭的重量大约是500000kg.将数据500000用科学记数法表示,结果是( )
22. 为了确保我国粮食种植的稳定性,国家提出了“严防死守18亿亩耕地的红线目标”,经过了多年的努力和坚守,我国耕地面积止住了下跌趋势,而且还实现了增长.到2020年,全国耕地保有量回升至18.65亿亩以上,1865000000用科学记数法表示为( )
23. 某校七年级举办的趣味“体育节”共设计了五个比赛项目,每个项目都以班级为单位参赛,且每个班级都需要参加全部项目.规定:每项比赛中,只有排在前三名的班级记成绩(没有并列班级),第一名的班级记a分,第二名的班级记b分,第三名的班级记c分(,a,b,c均为正整数);各班比赛的总成绩为本班每项比赛的记分之和,该年级共有四个班,若这四个班在本次“体育节”的总成绩分别为21,6,9,4,则______,a的值为______.
24. 2021年《中共中央国务院关于完整准确全面贯彻新发展理念做好碳达峰碳中和工作的意见》发布,明确了我国实现碳达峰碳中和的时间表、路线图.文件提出到2030年森林蓄积量达到190亿立方米.将19000000000用科学记数法表示应为( )
25. 定义:数轴上,,,表示的数分别为,,,.若点到点,中一个点的距离与点到点,中另一个点的距离之和等于点与点之间的距离,我们就称是的调和点对.
例如,如图,点,,,表示的数分别为,,,.
此时,,,因此,点,,,满足,称是的调和点对.
请根据上述材料解决下面问题:
在数轴上点,表示的数分别为,,且,满足,
(1)______,______;
(2)点,,,表示的数分别为,,,,其中可以组成的调和点对的是______;
(3)若点从点以每秒个单位长度向右运动,同时点从点以每秒个单位长度向左运动,当点到达点时,点,同时停止运动.设点的运动时间为秒.当为的调和点对时,直接写出的值.
26. 从正整数中,选出组数,满足以下三个条件:
①每组2个数不相等;
②任意两组都不含有相同的数;
③每组2个数的和互不相同且不超过15.
根据以上条件,回答下列问题:
(1)若,请写出一种选取方案:第1组:________,第2组:________;
(2)的最大值为_______.
27. 阅读理解:
我们通常学习的数都是十进制数,使用的数码共有10个:0、1、2、3、4、5、6、7、8、9,表示具体数时采用“逢十进一”的原则,比如:,(这里我们规定:a≠0时,),又如:.而现代的计算机和依赖计算机的设备都使用二进制数,用到的数码只有两个:0和1,表示具体数时“逢二进一”.二进制数和十进制数可以互相转化,二进制数的运算也和十进制数的运算类似.
①我们可以把十进制整数转化成二进制整数.比如:,所以103用二进制数码表示是1100111,记为;
②也可以把十进制分数或者小数转化为二进制小数,比如:,所以可以表示成二进制小数,记为.
这里还可以把分子1和分母8都转化为二进制数,在二进制下用分了除以分母得到的二进制小数表示:
由于,,所以,而可以类比十进制数一样做除法,只是商和余数都只能是0或1:,所以;
③与十进制数类似,二进制也有循环小数,比如:
,由,可知.
问题解决:
(1)将十进制数35化成二进制数为:(______).二进制小数化为十进制分数是______.
(2)将十进制分数化成二进制小数:;.
(3)在十进制中,循环小数都可以化为分数,比如:将化为分数形式.
设(A) 则(B).
得:即,于是得到.
同样,二进制中的循环小数也可以用类似的方法化为十进制分数.
请二进制循环小数化成十进制分数,保留计算过程.
28. 某学校在七年级开展种植类的劳动课程.现需要购买仿生阳光房若干个.经调查发现,同一款式的仿生阳光房在甲、乙两家商店的标价均是100元.
新年将至,两家商店开展促销活动,优惠方式如下:
甲商店:每个仿生阳光房按9折(标价的90%)出售;
乙商店:购买的仿生阳光房的个数不超过10时,按标价出售;购买的仿生阳光房的个数超过10时,超过部分按8折(标价的80%)出售.
(1)若在甲商店购买10个该款式的仿生阳光房,则花费______元;
(2)若在乙商店购买m()个该款式的仿生阳光房,则花费______元(用含m的代数式表示);
(3)购买该款式的仿生阳光房的个数为多少时,在甲、乙两家商店的花费相同?
29. 对,定义一种新运算:.
例如:当,时,.
(1)若,,求和的值;
(2)若是非负数,,求的取值范围.
30. 2024年政府工作报告中提出“大力推进现代化产业体系建设,加快发展新质生产力”.北京正在建设国际科技创新中心,人工智能产业是北京的主导产业之一.目前,人工智能相关企业数量约2200家,全国40%人工智能企业聚集于此.2023年,北京在人工智能领域融资总额约223亿元,约占全国四分之一.数据22300000000用科学记数法表示应为( )
A.
B.
C.
D.
()
()
()
A.
B.
C.
D.
A.原点O在点M左侧
B.原点O在点N的右侧
C.原点O在点M、N之间,且
D.原点O在点M、N之间,且
板材要求
板材型号
板材规格
需用量
型板材
块
型板材
块
裁法
板材型号
裁法一
裁法二
裁法三
型板材
型板材
A.
B.
C.
D.
客车型号
甲
乙
丙
每辆客车载客量/人
20
30
40
每辆客车的租金/元
500
600
900
1
2
3
4
5
6
7
8
9
天干
甲
乙
丙
丁
戊
己
庚
辛
壬
癸
地支
子
丑
寅
卯
辰
巳
午
未
申
酉
戌
亥
A.
B.
C.
D.
A.
B.
C.
D.
一户居民一个月用电量(单位:度)
电价(单位:元/度)
第1档
不超过180度的部分
0.5
第2档
超过180度的部分
0.7
大礼包编号
一等奖(个)
二等奖(个)
三等奖(个)
总奖品数(个)
1
5
4
10
2
3
3
8
3
1
4
8
4
2
5
11
5
1
3
9
3
4
5
12
A.5×105
B.5×106
C.0.5×105
D.0.5×106
A.
B.
C.
D.
A.
B.
C.
D.
A.
B.
C.
D.
2024北京中考名校密题:数学最后冲刺30题-数与式-实数: 这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-实数,共13页。试卷主要包含了001),即_____., 经研究发现等内容,欢迎下载使用。
2024北京中考名校密题:数学最后冲刺30题-数与式-因式分解: 这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-因式分解,共5页。试卷主要包含了 阅读下面材料, 阅读, 分解因式, 阅读材料并回答问题, 阅读下列材料, 阅读材料等内容,欢迎下载使用。
2024北京中考名校密题:数学最后冲刺30题-数与式-分式: 这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-分式,共11页。试卷主要包含了 阅读理解, 通分等内容,欢迎下载使用。