


所属成套资源:2024北京中考名校密题
2024北京中考名校密题:数学最后冲刺30题-数与式-有理数运算
展开
这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-有理数运算,共10页。试卷主要包含了001),即_____.等内容,欢迎下载使用。
1. 党的十八大以来,坚持把教育扶贫作为脱贫攻坚的优先任务.年,中央财政累计投入“全面改善贫困地区义务教育薄弱学校基本办学条件”专项补助资金1692亿元,将169200000000用科学记数法表示应为( )
2. 某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进本甲种书和本乙种书,共付款元.
(1)用含,的代数式表示;
(2)若共购进本甲种书及本乙种书,用科学记数法表示的值.
3. 已知,数轴上A,B,C三点对应的有理数分别为a,b,c.其中点A在点B左侧,A,B两点间的距离为2,且a,b,c满足,则a=____.对数轴上任意一点P,点P对应数x,若存在x使的值最小,则x的值为_________.
4. 现在有三个仓库、、,分别存有吨、吨、吨某原材料;要将这种原材料运往三个加工厂、、,每个加工厂都需要吨原材料.从每个仓库运送吨材料到每个加工厂的成本如下表所示(单位:元吨):
现在要让每个仓库清仓、每个加工厂都得到足够的材料,
(1)如果从运吨到、运吨到,从运吨到,那么从需要运__________吨到;
(2)考虑各种方案,运费最低为__________元.
5. 地处北京怀柔科学城的“北京光源”()是我国第一台高能同步辐射光源,在施工时严格执行“防微振动控制”的要求,控制精度级别达到纳米(nm)级.1nmm.将用科学记数法表示应为( )
6. “说不完的”探究活动,根据各探究小组的汇报,完成下列问题.
(1)到底有多大?
下面是小欣探索的近似值的过程,请补充完整:
我们知道面积是2的正方形边长是,且.设,画出如下示意图.
由面积公式,可得______.
因为值很小,所以更小,略去,得方程______,解得____(保留到0.001),即_____.
(2)怎样画出?请一起参与小敏探索画过程.
现有2个边长为1的正方形,排列形式如图(1),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.
小敏同学的做法是:设新正方形的边长为.依题意,割补前后图形的面积相等,有,解得.把图(1)如图所示进行分割,请在图(2)中用实线画出拼接成的新正方形.
请参考小敏做法,现有5个边长为1的正方形,排列形式如图(3),请把它们分割后拼接成一个新的正方形.要求:画出分割线并在正方形网格图(4)中用实线画出拼接成的新正方形.说明:直接画出图形,不要求写分析过程.
7. 下面是小明和小乐在学习有理数运算后的一段对话.
请你完成下面的运算,并填写运算过程中的依据
解:3-5
=3+( )(依据: )
=-( -3)
= .
8. 点M,N在数轴上的位置如图所示,点M,N表示的有理数为a,b.如果,那么下列描述数轴原点的位置说法正确的是( )
9. 为落实生态文明建设,推动绿色发展,促进人与自然和谐共生,某公司装修采用同质地的型、型环保板材,具体要求如下:
现只能购得规格为的符合质地要求的标准板材,一张标准板材尽可能多地裁出型、型板材,裁法如下(损耗忽略不计):
上表中的值为_______;公司需购入标准板材至少_______张.
10. 甲、乙两人分别在A,B两条生产线上加工零件,在A生产线,甲、乙均是每天最少可以加工2个A零件.当连续生产时,甲第一天能加工10个A零件,每连续加工一天,加工的零件数比前一天少2个;乙第一天能加工8个A零件,每连续加工一天,加工的零件数比前一天少1个.在B生产线,甲每天加工7个B零件,乙每天加工8个B零件.在同一天内,甲和乙不能在同一条生产线上工作,且在一条生产线连续工作不少于3天时可改变生产线,改变生产线后加工时间重新计算.根据题意,得:
(1)甲在A生产线连续工作3天最多能加工A零件______个;
(2)若一个A零件、一个B零件组成一套产品,则14天最多能加工______套产品.
11. 从水利部长江水利委员会获悉,截止2023年3月30日17时,南水北调中线一期工程自2014年12月全面通水以来,已累计向受水区实施生态补水约90亿立方米.其中9000000000用科学记数法表示为( )
12. 小东对有理数定义了一种新的运算,叫做“乘减法”,记作“”.他写出了一些按照“乘减法”运算的算式:,,,,,,,,,.
小玲看了这些算式后说:“我明白你定义的乘减法法则了.”她将法则整理出来给小东看,小东说:“你的理解完全正确.”
(1)请将下面小玲整理的“乘减法”法则补充完整:
绝对值不相等的两数相“乘减”,同号得______,异号得______,并______;绝对值相等的两数相“乘减”,都得0;一个数与0相“乘减”,或0与一个数相“乘减”,都得这个数的绝对值.
(2)若括号的作用与它在有理数运算中的作用相同,
用“乘减法”计算:______.
小东发现交换律在有理数的“乘减法”中仍然成立,即.但是结合律在有理数的“乘减法”中不一定成立,请你举一个例子说明不成立.
13. 某校计划租用甲,乙,丙三种型号客车送师生去综合实践基地开展活动.每种型号客车的载客量及租金如下表所示:
其中租用甲型客车有优惠活动:租用三辆或三辆以上每辆客车的租金打8折.现有280名师生需要前往综合实践基地,要求每种型号的客车至少租1辆,且每辆车都坐满.
(1)如果甲,乙,丙三种型号客车的租用数量分别是2,4,3,那么租车的总费用为______元;
(2)如果租车的总费用最低,那么甲,乙,丙三种型号客车的租用数量可以分别是______.
14. 干支纪年法是中国历法上自古以来就一直使用的纪年方法,干支是天干和地支的总称.干支纪年法的组合方式是天干在前,地支在后,以十天干和十二地支循环配合,每个组合代表﹣﹣年,年为一个循环.我们把天干、地支按顺序排列,且给它们编上序号.天干的计算方法是:年份减3,除以所得的余数;地支的计算方法是:年份减3,除以所得的余数.以年为例:天干为:;地支为:;对照天干地支表得出,年为农历壬寅年.
请你依据上述规律推断年为农历 ___________年.
15. 京张高铁,京礼高速两条北京冬奥会重要交通保障设施投入使用后,将张家口、崇礼、延庆与北京城区串成一线.京张高铁开通运营一年累计发送旅客6 800 000人,大幅提升了京张两地通行能力,将6 800 000用科学记数法表示为( )
16. 在数轴上,把原点记作点O,表示数1的点记作点A.对于数轴上任意一点P(不与点O,点A重合),将线段与线段的长度之比定义为点P的特征值,记作.即.例如:当点P是线段的中点时,因为,所以.
(1)如图,点,,为数轴上三个点,点表示的数是,点与关于原点对称.
①______;
②比较,,的大小______(用“
相关试卷
这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-实数,共13页。试卷主要包含了001),即_____., 经研究发现等内容,欢迎下载使用。
这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-因式分解,共5页。试卷主要包含了 阅读下面材料, 阅读, 分解因式, 阅读材料并回答问题, 阅读下列材料, 阅读材料等内容,欢迎下载使用。
这是一份2024北京中考名校密题:数学最后冲刺30题-数与式-分式,共11页。试卷主要包含了 阅读理解, 通分等内容,欢迎下载使用。