十年(2014-2023)高考数学真题分项汇编(全国通用)专题23 立体几何解答题(理科)-3
展开(2016高考数学江苏文理科·第17题)
现需要设计一个仓库,它由上下两部分组成,上部分的形状是正四棱锥,下部分的形状是正四棱柱(如图所示),并要求正四棱柱的高是正四棱锥的高的4倍.
(1)若则仓库的容积是多少?
(2)若正四棱锥的侧棱长为,则当为多少时,仓库的容积最大?
(2014高考数学上海理科·第19题)
底面边长为2的正三棱锥,其表面展开图是三角形,如图,求△的各边长及此三棱锥的体积.
(2014高考数学课标2理科·第18题)
如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
(2014高考数学安徽理科·第20题)
如图,四棱柱中,底面.四边形为梯形,,且.过三点的平面记为与的交点为.
(1)证明:为的中点;
(2)求此四棱柱被平面所分成上下两部分的体积之比;
(3)若,梯形的面积为6,求平面与底面所成二面角大小.
(2015高考数学湖南理科·第21题)
如图,已知四棱台的上、下底面分别是边长为3和6的正方形, ,且底面 ,点分别在棱 上.
(1)若是 的中点,证明:;
(2)若平面 ,二面角的余弦值为 ,求四面体的体积.
题型七:求距离的问题
(2019·上海·第17题)
如图,在长方体中,为上一点,已知,,,.
(1)求直线和平面的夹角;
(2)求点到平面的距离.
(2023年天津卷·第17题)
如图,在三棱台中,平面,为中点.,N为AB的中点,
(1)求证://平面;
(2)求平面与平面所成夹角的余弦值;
(3)求点到平面的距离.
题型八:根据条件确定点的位置
(2021高考北京·第17题)
如图:在正方体中,为中点,与平面交于点.
(1)求证:为的中点;
(2)点是棱上一点,且二面角的余弦值为,求的值.
(2014高考数学湖北理科·第19题)
如图,在棱长为的正方体中,、、、分别是棱、、、的中点,点、分别在棱、上移动,且.
(1)当时,证明:直线平面;
(2)是否存在,使面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.
(2021年高考全国甲卷理科·第19题)
已知直三棱柱中,侧面为正方形,,E,F分别为和的中点,D为棱上的点.
(1)证明:;
(2)当为何值时,面与面所成的二面角的正弦值最小?
(2021年新高考Ⅰ卷·第20题)
如图,在三棱锥中,平面平面,,为的中点.
(1)证明:;
(2)若是边长为1的等边三角形,点在棱上,,且二面角的大小为,求三棱锥的体积.
(2016高考数学北京理科·第17题)
如图,在四棱锥中, 平面平面,.
(1)求证:平面;
(2)求直线与平面所成角的正弦值;
(3)在棱上是否存在点,使得平面?若存在, 求的值;若不存在, 说明理由.
(2023年新课标全国Ⅰ卷·第18题)
如图,在正四棱柱中,.点分别在棱,上,.
(1)证明:;
(2)点在棱上,当二面角为时,求.
(2018年高考数学天津(理)·第17题)
如图,且AD=2BC,,且EG=AD,且CD=2FG,,DA=DC=DG=2.
(I)若M为CF的中点,N为EG的中点,求证:平面;
(II)求二面角的正弦值;
(III)若点P在线段DG上,且直线BP与平面ADGE所成的角为60°,求线段DP的长.
(2014高考数学天津理科·第17题)
如图,在四棱锥中,底面,,点为棱的中点.
(1)证明:;
(2)求直线与平面所成角的正弦值;
(3)若为棱上一点,满足,求二面角的余弦值.
(2015高考数学湖北理科·第19题)
《九章算术》中,将底面为长方形且有一条侧棱与底面垂直的四棱锥称之为阳马,将四个面都为直角三角形的四面体称之为鳖臑.
如图,在阳马中,侧棱 底面,且 ,过棱的中点 ,作交 于点,连接
(Ⅰ)证明:.试判断四面体 是否为鳖臑,若是,写出其每个面的直角(只需写
出结论);若不是,说明理由;
(Ⅱ)若面与面 所成二面角的大小为,求的值.
(2017年高考数学天津理科·第17题)
如图,在三棱锥中,底面,.点,,分别为棱,,的中点,是线段的中点,,.
(1)求证:平面;
(2)求二面角的正弦值;
(3)已知点在棱上,且直线与直线所成角的余弦值为,求线段的长.
(2017年高考数学课标Ⅲ卷理科·第19题)
(2017新课标全国Ⅲ理科)如图,四面体ABCD中,△ABC是正三角形,△ACD是直角三角形,∠ABD=∠CBD,AB=BD.
(1)证明:平面ACD⊥平面ABC;
(2)过AC的平面交BD于点E,若平面AEC把四面体ABCD分成体积相等的两部分,求二面角D–AE–C的余弦值.
(2017年高考数学课标Ⅱ卷理科·第19题)
如图,四棱锥P-ABCD中,侧面PAD是边长为2的等边三角形且垂直于底面,是的中点.
(1)证明:直线平面;
(2)点在棱上,且直线与底面所成角为,求二面角的余弦值.
题型九:立体几何中求最值问题
(2020年新高考全国Ⅰ卷(山东)·第20题)
如图,四棱锥P-ABCD的底面为正方形,PD⊥底面ABCD.设平面PAD与平面PBC的交线为l.
(1)证明:l⊥平面PDC;
(2)已知PD=AD=1,Q为l上的点,求PB与平面QCD所成角的正弦值的最大值.
(2018年高考数学课标Ⅲ卷(理)·第19题)
如图,边长为2的正方形所在的平面与半圆弧所在平面垂直,是上异于,的点.
(1)证明:平面平面;
(2)当三棱锥体积最大时,求面与面所成二面角的正弦值.
(2014高考数学江西理科·第20题)
四棱锥中,为矩形,平面平面.
(1)求证:
(2)若问为何值时,四棱锥的体积最大?并求此时平面与平面夹角的余弦值.
(2015高考数学江苏文理·第25题)
如图,在四棱锥中,已知平面,且四边形为直角梯形,,,.
(1)求平面与平面所成锐二面角的余弦值;
(2)点是线段上的动点,当直线与所成的角最小时,求线段的长.
题型十:立体几何的综合应用
(2019·北京·理·第16题)
如图,在四棱锥P–ABCD中,PA⊥平面ABCD,AD⊥CD,AD∥BC,PA=AD=CD=2,BC=3.E为PD的中点,点F在PC上,且.
(Ⅰ)求证:CD⊥平面PAD;
(Ⅱ)求二面角F–AE–P的余弦值;
(Ⅲ)设点G在PB上,且.判断直线AG是否在平面AEF内,说明理由.
(2017年高考数学江苏文理科·第18题)
如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)
(1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;
(2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.
专题23 立体几何解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题23 立体几何解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题23立体几何解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题23立体几何解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共202页, 欢迎下载使用。
专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题22导数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题22导数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共152页, 欢迎下载使用。
专题04 函数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题04 函数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题04函数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题04函数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。