十年(2014-2023)高考数学真题分项汇编(全国通用)专题04 函数解答题(3类题型 理科)
展开目录
题型一:函数概念及其性质
题型二:函数的零点问题
题型三:函数的应用
题型一:函数概念及其性质
(2020江苏高考·第19题)
已知关于x的函数与在区间D上恒有.
(1)若,求h(x)的表达式;
(2)若,求k的取值范围;
(3)若求证:.
(2014高考数学上海理科·第20题)
设常数,函数.
(1)若,求函数的反函数;
(2)根据的不同取值,讨论函数的奇偶性,并说明理由.
(2014高考数学广东理科·第21题)
设函数,其中.
(1)求函数的定义域(用区间表示);
(2)讨论函数在上的单调性;
(3)若,求上满足条件的的集合(用区间表示).
(2015高考数学浙江理科·第18题)
已知函数,记是在区间上的最大值.
(1)证明:当时,;
(2)当,满足,求的最大值.
(2015高考数学上海理科·第23题)
对于定义域为的函数,若存在正常数,使得是以为周期的函数,则称为余弦周期函数,且称为其余弦周期.已知是以为余弦周期的余弦周期函数,其值域为.设单调递增,,.
(1)验证是以为周期的余弦周期函数;
(2)设.证明对任意,存在,使得;
(3)证明:“为方程在上得解”的充要条件是“为方程在上有解”,并证明对任意都有.
(2017年高考数学上海(文理科)·第21题)
设定义在上的函数满足:对于任意的、,当时,都有.
(1)若,求的取值范围;
(2)若为周期函数,证明:是常值函数;
(3)设恒大于零,是定义在上、恒大于零的周期函数,是的最大值.
函数. 证明:“是周期函数”的充要条件是“是常值函数”.
(2016高考数学浙江理科·第18题)
已知,函数F(x)=min{2|x−1|,x2−2ax+4a−2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x2−2ax+4a−2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
已知,函数.
(1)当时,解不等式;
(2)若关于的方程的解集中恰有一个元素,求的取值范围;
(3)设,若对任意,函数在区间上的最大值与最小值的差不超过1,求的取值范围.
题型二:函数的零点问题
(2020年浙江省高考数学试卷·第22题)
已知,函数,其中e=2.71828…为自然对数的底数.
(Ⅰ)证明:函数在上有唯一零点;
(Ⅱ)记x0为函数在上的零点,证明:
(ⅰ);
(ⅱ).
(2019·上海·第18题)
已知.
(1)当时,求不等式的解集;
(2)若时,有零点,求的范围.
(2016高考数学江苏文理科·第19题)
已知函数.
(1)设.
①求方程=2的根;
②若对任意,不等式恒成立,求实数m的最大值;
(2)若,函数有且只有1个零点,求ab的值.
题型三:函数的应用
(2020江苏高考·第17题)
某地准备在山谷中建一座桥梁,桥址位置的竖直截面图如图所示:谷底O在水平线MN上,桥AB与MN平行,为铅垂线(在AB上).经测量,左侧曲线AO上任一点D到MN的距离(米)与D到的距离a(米)之间满足关系式;右侧曲线BO上任一点F到MN的距离(米)与F到的距离b(米)之间满足关系式.已知点B到的距离为40米.
(1)求桥AB的长度;
(2)计划在谷底两侧建造平行于的桥墩CD和EF,且CE为80米,其中C,E在AB上(不包括端点).桥墩EF每米造价k(万元)、桥墩CD每米造价(万元)(k>0).问为多少米时,桥墩CD与EF的总造价最低?
(2018年高考数学上海·第19题)
某群体的人均通勤时间,是指单日内该群体中成员从居住地到工作地的平均用时.某地上班族中的成员仅以自驾或公交方式通勤.分析显示:当中()的成员自驾时,自驾群体的人均通勤时间为(单位:分钟),而公交群体的人均通勤时间不受影响,恒为分钟,试根据上述分析结果回答下列问题:
(1)当在什么范围内时,公交群体的人均通勤时间少于自驾群体的人均通勤时间?
(2)求该地上班族的人均通勤时间的表达式;讨论的单调性,并说明其实际意义.
(2015高考数学上海理科·第20题)
如图,, ,三地有直道相通, 千米,千米, 千米.现甲、乙两警员同时从地出发匀速前往 地,经过小时,他们之间的距离为 (单位:千米).甲的路线是,速度为千米/小时,乙的路线是,速度为千米/小时.乙到达地后原地等待.设时乙到达地.
(1)求与 的值;
(2)已知警员的对讲机的有效通话距离是千米.当 时,求的表达式,并判断 在上得最大值是否超过?说明理由.
专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题22 导数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题22导数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题22导数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共152页, 欢迎下载使用。
专题21 数列解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题21 数列解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题21数列解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题21数列解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共104页, 欢迎下载使用。
专题04 函数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用): 这是一份专题04 函数解答题(理科)- 十年(2014-2023)高考数学真题分项汇编(全国通用),文件包含专题04函数解答题理科解析版-十年2014-2023高考数学真题分项汇编全国通用docx、专题04函数解答题理科学生版-十年2014-2023高考数学真题分项汇编全国通用docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。