十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-3
展开题型九:圆锥曲线中的证明问题
(2021年新高考全国Ⅱ卷·第20题)
已知椭圆C的方程为,右焦点为,且离心率为.
(1)求椭圆C的方程;
(2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
(2020年高考课标Ⅰ卷理科·第20题)
已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
(1)求E的方程;
(2)证明:直线CD过定点.
(2020年新高考全国Ⅰ卷(山东)·第22题)
已知椭圆C:的离心率为,且过点.
(1)求的方程:
(2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
(2022年高考全国乙卷数学(理)·第20题)
已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
(1)求E的方程;
(2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
(2018年高考数学课标Ⅲ卷(理)·第20题)
已知斜率为的直线与椭圆交于,两点,线段的中点为.
(1)证明:;
(2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.
(2018年高考数学课标卷Ⅰ(理)·第19题)
设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
(1)当与轴垂直时,求直线的方程;
(2)设为坐标原点,证明:.
(2015高考数学湖南理科·第22题)
已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
(1)求的方程;
(2)过点的直线与相交于,两点,与相交于,两点,且与同向
(ⅰ)若,求直线的斜率
(ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形
(2017年高考数学新课标Ⅰ卷理科·第20题)
已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.
(Ⅰ)求C的方程;
(Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
(2017年高考数学课标Ⅱ卷理科·第20题)
设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
(1)求点P的轨迹方程;
(2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
(2016高考数学四川理科·第20题)
已知椭圆()的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆由且只有一个公共点.
(1)求椭圆的方程;
(2)设为坐标原点,直线平行,与椭圆交于不同的两点,且与直线交于,证明:存在常数,使得,并求的值.
(2016高考数学北京理科·第19题)
已知椭圆:()的离心率为,,,,的面积为1.
(1)求椭圆的方程;
(2)设是椭圆上一点,直线与轴交于点,直线与轴交于点,求证:为定值.
题型十:圆锥曲线中的最值问题
(2015高考数学浙江理科·第19题)
已知椭圆上两个不同的点,关于直线对称.
(1)求实数的取值范围;
(2)求面积的最大值(为坐标原点).
(2014高考数学课标1理科·第20题)
已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
(1)求E的方程;
(2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
(2015高考数学山东理科·第20题)
平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.
(Ⅰ)求椭圆的方程;
(Ⅱ)设椭圆,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.
(i)求的值;
(ⅱ)求面积的最大值.
(2015高考数学湖北理科·第21题)
一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内做往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.
(Ⅰ)求曲线C的方程;
(Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
(2017年高考数学山东理科·第21题)
在平面直角坐标系中,椭圆:的离心率为,焦距为.
(Ⅰ)求椭圆的方程;
(Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.
(2016高考数学山东理科·第21题)
平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
(i)求证:点M在定直线上;
(ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.
题型十一:圆锥曲线中的综合问题
(2023年新课标全国Ⅰ卷·第22题)
在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
(1)求的方程;
(2)已知矩形有三个顶点在上,证明:矩形的周长大于.
(2014高考数学湖南理科·第21题)
如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
(1)求的方程;
(2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.
(2018年高考数学上海·第20题)
设常数.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线:,与x轴交于点A、与交于点B.P、Q分别是曲线与线段AB上的动点.
(1)用t表示点B到点F距离;
(2)设,,线段OQ的中点在直线FP上,求的面积;
(3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在上?若存在,求点P的坐标;若不存在,说明理由.
(2014高考数学陕西理科·第22题)
如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.
(Ⅰ)求的值;
(Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.
(2014高考数学山东理科·第21题)
已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
(Ⅰ)求的方程;
(Ⅱ)若直线,且和有且只有一个公共点,
(ⅰ)证明直线过定点,并求出定点坐标;
(ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
(2017年高考数学天津理科·第19题)
设椭圆的左焦点为,右顶点为A,离心率为.已知A是抛物线的焦点,F到抛物线的准线l的距离为.
(1)求椭圆的方程和抛物线的方程;
(2)设l上两点P,Q,关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线与x轴相交于点D.若的面积为,求直线AP的方程.
(2017年高考数学课标Ⅲ卷理科·第20题)
已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
(1)证明:坐标原点O在圆M上;
(2)设圆M过点,求直线l与圆M的方程.
(2016高考数学上海理科·第20题)
有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走.于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图
(1)求菜地内的分界线的方程
(2)菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为.设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值
(2023年全国乙卷理科·第20题)
已知椭圆的离心率是,点在上.
(1)求的方程;
(2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
(2020年高考课标Ⅱ卷理科·第19题)
已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
(1)求C1的离心率;
(2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
(2019·天津·理·第18题)
设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
(Ⅰ)求椭圆的方程;
(Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
(2019·全国Ⅱ·理·第21题)
已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
(1)求C的方程,并说明C是什么曲线;
(2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
(i)证明:是直角三角形;
(ii)求面积的最大值.
(2019·江苏·第17题)
如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.
(1)求椭圆C的标准方程;
(2)求点E的坐标.
(2014高考数学上海理科·第22题)
在平面直角坐标系中,对于直线和点、,记,若,则称点,被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点,被直线l分隔,则称直线l为曲线C的一条分隔线.
(1)求证:点、被直线分隔;
(2)若直线是曲线的分隔线,求实数的取值范围;
(3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.
(2014高考数学大纲理科·第21题)
已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
(1)求抛物线C的方程;
(2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.
十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-1: 这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-1,共14页。
十年(2014-2023)高考数学真题分项汇编(全国通用)专题22 导数解答题(理科)-3: 这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题22 导数解答题(理科)-3,共4页。
十年(2014-2023)高考数学真题分项汇编(全国通用)专题21 数列解答题(理科)-3: 这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题21 数列解答题(理科)-3,共3页。