|试卷下载
搜索
    上传资料 赚现金
    十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-3
    立即下载
    加入资料篮
    十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-301
    十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-302
    十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-303
    还剩8页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-3

    展开
    这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-3,共11页。

    题型九:圆锥曲线中的证明问题
    (2021年新高考全国Ⅱ卷·第20题)
    已知椭圆C的方程为,右焦点为,且离心率为.
    (1)求椭圆C的方程;
    (2)设M,N是椭圆C上的两点,直线与曲线相切.证明:M,N,F三点共线的充要条件是.
    (2020年高考课标Ⅰ卷理科·第20题)
    已知A、B分别为椭圆E:(a>1)的左、右顶点,G为E的上顶点,,P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.
    (1)求E的方程;
    (2)证明:直线CD过定点.
    (2020年新高考全国Ⅰ卷(山东)·第22题)
    已知椭圆C:的离心率为,且过点.
    (1)求的方程:
    (2)点,在上,且,,为垂足.证明:存在定点,使得为定值.
    (2022年高考全国乙卷数学(理)·第20题)
    已知椭圆E的中心为坐标原点,对称轴为x轴、y轴,且过两点.
    (1)求E的方程;
    (2)设过点的直线交E于M,N两点,过M且平行于x轴的直线与线段AB交于点T,点H满足.证明:直线HN过定点.
    (2018年高考数学课标Ⅲ卷(理)·第20题)
    已知斜率为的直线与椭圆交于,两点,线段的中点为.
    (1)证明:;
    (2)设为的右焦点,为上一点,且.证明:,,成等差数列,并求该数列的公差.
    (2018年高考数学课标卷Ⅰ(理)·第19题)
    设椭圆的右焦点为,过的直线与交于两点,点的坐标为.
    (1)当与轴垂直时,求直线的方程;
    (2)设为坐标原点,证明:.
    (2015高考数学湖南理科·第22题)
    已知抛物线的焦点也是椭圆的一个焦点,与的公共弦的长为.
    (1)求的方程;
    (2)过点的直线与相交于,两点,与相交于,两点,且与同向
    (ⅰ)若,求直线的斜率
    (ⅱ)设在点处的切线与轴的交点为,证明:直线绕点旋转时,总是钝角三角形
    (2017年高考数学新课标Ⅰ卷理科·第20题)
    已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.
    (Ⅰ)求C的方程;
    (Ⅱ)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.
    (2017年高考数学课标Ⅱ卷理科·第20题)
    设O为坐标原点,动点M在椭圆C上,过M作x轴的垂线,垂足为N,点P满足.
    (1)求点P的轨迹方程;
    (2)设点在直线上,且.证明:过点P且垂直于OQ的直线过C的左焦点F.
    (2016高考数学四川理科·第20题)
    已知椭圆()的两个焦点与短轴的一个端点是直角三角形的三个顶点,直线 与椭圆由且只有一个公共点.
    (1)求椭圆的方程;
    (2)设为坐标原点,直线平行,与椭圆交于不同的两点,且与直线交于,证明:存在常数,使得,并求的值.
    (2016高考数学北京理科·第19题)
    已知椭圆:()的离心率为,,,,的面积为1.
    (1)求椭圆的方程;
    (2)设是椭圆上一点,直线与轴交于点,直线与轴交于点,求证:为定值.
    题型十:圆锥曲线中的最值问题
    (2015高考数学浙江理科·第19题)
    已知椭圆上两个不同的点,关于直线对称.
    (1)求实数的取值范围;
    (2)求面积的最大值(为坐标原点).
    (2014高考数学课标1理科·第20题)
    已知点A(0,-2),椭圆E: (a>b>0)的离心率为,F是椭圆E的右焦点,直线AF的斜率为,O为坐标原点.
    (1)求E的方程;
    (2)设过点A的动直线l与E相交于P,Q两点.当△OPQ的面积最大时,求l的方程.
    (2015高考数学山东理科·第20题)
    平面直角坐标系中,已知椭圆的离心率为,左、右焦点分别是,以为圆心以3为半径的圆与以为圆心以1为半径的圆相交,且交点在椭圆上.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)设椭圆,为椭圆上任意一点,过点的直线交椭圆于两点,射线交椭圆于点.
    (i)求的值;
    (ⅱ)求面积的最大值.
    (2015高考数学湖北理科·第21题)
    一种作图工具如图1所示.是滑槽的中点,短杆可绕转动,长杆通过处铰链与连接,上的栓子可沿滑槽AB滑动,且,.当栓子在滑槽AB内做往复运动时,带动绕转动一周(不动时,也不动),处的笔尖画出的曲线记为.以为原点,所在的直线为轴建立如图2所示的平面直角坐标系.

    (Ⅰ)求曲线C的方程;
    (Ⅱ)设动直线与两定直线和分别交于两点.若直线总与曲线有且只有一个公共点,试探究:的面积是否存在最小值?若存在,求出该最小值;若不存在,说明理由.
    (2017年高考数学山东理科·第21题)
    在平面直角坐标系中,椭圆:的离心率为,焦距为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)如图,动直线:交椭圆于两点,是椭圆上一点,直线的斜率为,且,是线段延长线上一点,且,的半径为,是的两条切线,切点分别为.求的最大值,并求取得最大值时直线的斜率.
    (2016高考数学山东理科·第21题)
    平面直角坐标系中,椭圆C:的离心率是,抛物线E:的焦点F是C的一个顶点.
    (Ⅰ)求椭圆C的方程;
    (Ⅱ)设P是E上的动点,且位于第一象限,E在点P处的切线与C交与不同的两点A,B,线段AB的中点为D,直线OD与过P且垂直于x轴的直线交于点M.
    (i)求证:点M在定直线上;
    (ii)直线与y轴交于点G,记的面积为,的面积为,求的最大值及取得最大值时点P的坐标.
    题型十一:圆锥曲线中的综合问题
    (2023年新课标全国Ⅰ卷·第22题)
    在直角坐标系中,点到轴的距离等于点到点的距离,记动点的轨迹为.
    (1)求的方程;
    (2)已知矩形有三个顶点在上,证明:矩形的周长大于.
    (2014高考数学湖南理科·第21题)
    如图,为坐标原点,椭圆的左右焦点分别为,离心率为;双曲线的左右焦点分别为,离心率为,已知,且.
    (1)求的方程;
    (2)过点作的不垂直于轴的弦,为的中点,当直线与交于两点时,求四边形面积的最小值.
    (2018年高考数学上海·第20题)
    设常数.在平面直角坐标系xOy中,已知点F(2,0),直线l:x=t,曲线:,与x轴交于点A、与交于点B.P、Q分别是曲线与线段AB上的动点.
    (1)用t表示点B到点F距离;
    (2)设,,线段OQ的中点在直线FP上,求的面积;
    (3)设t=8,是否存在以FP、FQ为邻边的矩形FPEQ,使得点E在上?若存在,求点P的坐标;若不存在,说明理由.
    (2014高考数学陕西理科·第22题)
    如图,曲线由上半椭圆和部分抛物线连接而成,的公共点为,其中的离心率为.
    (Ⅰ)求的值;
    (Ⅱ)过点的直线与分别交于(均异于点),若,求直线的方程.
    (2014高考数学山东理科·第21题)
    已知抛物线的焦点为,为上异于原点的任意一点,过点的直线交于另一点,交轴的正半轴于点,且有.当点的横坐标为时,为正三角形.
    (Ⅰ)求的方程;
    (Ⅱ)若直线,且和有且只有一个公共点,
    (ⅰ)证明直线过定点,并求出定点坐标;
    (ⅱ)的面积是否存在最小值?若存在,请求出最小值;若不存在,请说明理由.
    (2017年高考数学天津理科·第19题)
    设椭圆的左焦点为,右顶点为A,离心率为.已知A是抛物线的焦点,F到抛物线的准线l的距离为.
    (1)求椭圆的方程和抛物线的方程;
    (2)设l上两点P,Q,关于x轴对称,直线AP与椭圆相交于点B(B异于点A),直线与x轴相交于点D.若的面积为,求直线AP的方程.
    (2017年高考数学课标Ⅲ卷理科·第20题)
    已知抛物线C:y2=2x,过点(2,0)的直线l交C于A,B两点,圆M是以线段AB为直径的圆.
    (1)证明:坐标原点O在圆M上;
    (2)设圆M过点,求直线l与圆M的方程.
    (2016高考数学上海理科·第20题)
    有一块正方形菜地,所在直线是一条小河,收货的蔬菜可送到点或河边运走.于是,菜地分为两个区域和,其中中的蔬菜运到河边较近,中的蔬菜运到点较近,而菜地内和的分界线上的点到河边与到点的距离相等,现建立平面直角坐标系,其中原点为的中点,点的坐标为(1,0),如图
    (1)求菜地内的分界线的方程
    (2)菜农从蔬菜运量估计出面积是面积的两倍,由此得到面积的“经验值”为.设是上纵坐标为1的点,请计算以为一边、另一边过点的矩形的面积,及五边形的面积,并判断哪一个更接近于面积的经验值
    (2023年全国乙卷理科·第20题)
    已知椭圆的离心率是,点在上.
    (1)求的方程;
    (2)过点的直线交于两点,直线与轴的交点分别为,证明:线段的中点为定点.
    (2020年高考课标Ⅱ卷理科·第19题)
    已知椭圆C1:(a>b>0)的右焦点F与抛物线C2的焦点重合,C1的中心与C2的顶点重合.过F且与x轴垂直的直线交C1于A,B两点,交C2于C,D两点,且|CD|=|AB|.
    (1)求C1的离心率;
    (2)设M是C1与C2的公共点,若|MF|=5,求C1与C2的标准方程.
    (2019·天津·理·第18题)
    设椭圆的左焦点为,上顶点为.已知椭圆的短轴长为4,离心率为.
    (Ⅰ)求椭圆的方程;
    (Ⅱ)设点在椭圆上,且异于椭圆的上、下顶点,点为直线与轴的交点,点在轴的负半轴上.若(为原点),且,求直线的斜率.
    (2019·全国Ⅱ·理·第21题)
    已知点A(−2,0),B(2,0),动点M(x,y)满足直线AM与BM的斜率之积为−.记M的轨迹为曲线C.
    (1)求C的方程,并说明C是什么曲线;
    (2)过坐标原点的直线交C于P,Q两点,点P在第一象限,PE⊥x轴,垂足为E,连结QE并延长交C于点G.
    (i)证明:是直角三角形;
    (ii)求面积的最大值.
    (2019·江苏·第17题)
    如图,在平面直角坐标系xOy中,椭圆C:的焦点为F1(–1、0),F2(1,0).过F2作x轴的垂线l,在x轴的上方,l与圆F2:交于点A,与椭圆C交于点D.连结AF1并延长交圆F2于点B,连结BF2交椭圆C于点E,连结DF1.已知DF1=.
    (1)求椭圆C的标准方程;
    (2)求点E的坐标.
    (2014高考数学上海理科·第22题)
    在平面直角坐标系中,对于直线和点、,记,若,则称点,被直线l分隔,若曲线C与直线l没有公共点,且曲线C上存在点,被直线l分隔,则称直线l为曲线C的一条分隔线.
    (1)求证:点、被直线分隔;
    (2)若直线是曲线的分隔线,求实数的取值范围;
    (3)动点M到点的距离与到y轴的距离之积为1,设点M的轨迹为E,求E的方程,并证明y轴为曲线E的分隔线.
    (2014高考数学大纲理科·第21题)
    已知抛物线C:的焦点为F,直线y=4与y轴的交点为P,与C的交点为Q,且.
    (1)求抛物线C的方程;
    (2)过F的直线l与C相交于A,B两点,若AB的垂直平分线与C相交于M,N两点,且A,M,B,N四点在同一个圆上,求直线l的方程.
    相关试卷

    十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-1: 这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-1,共14页。

    十年(2014-2023)高考数学真题分项汇编(全国通用)专题22 导数解答题(理科)-3: 这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题22 导数解答题(理科)-3,共4页。

    十年(2014-2023)高考数学真题分项汇编(全国通用)专题21 数列解答题(理科)-3: 这是一份十年(2014-2023)高考数学真题分项汇编(全国通用)专题21 数列解答题(理科)-3,共3页。

    • 精品推荐
    • 所属专辑

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        十年(2014-2023)高考数学真题分项汇编(全国通用)专题24 解析几何解答题(理科)-3
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map