![热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)01](http://img-preview.51jiaoxi.com/3/3/15699501/1-1715126628680/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)02](http://img-preview.51jiaoxi.com/3/3/15699501/1-1715126628703/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)03](http://img-preview.51jiaoxi.com/3/3/15699501/1-1715126628726/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)01](http://img-preview.51jiaoxi.com/3/3/15699501/0-1715126621060/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)02](http://img-preview.51jiaoxi.com/3/3/15699501/0-1715126621115/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)03](http://img-preview.51jiaoxi.com/3/3/15699501/0-1715126621132/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
热点3-3 正弦定理与余弦定理(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用)
展开一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
热点3-3 正弦定理与余弦定理
“解三角形”是每年高考常考内容,在选择题、填空题中考查较多,有时也会出现在解答题中。对于解答题,一是考查正弦定理、余弦定理的简单应用;而是考查两个定理的综合应用,多与三角变换、平面向量等知识综合命题。以实际生活为背景(如测量、航海、几何天体运行和物理学上的应用等)考查解三角形问题,此类问题在近几年高考中虽未涉及,但深受高考命题者的青睐,应给予关注;在高考试题中出现有关解三角形的试题大多数为容易题、中档题。
【题型1 正、余弦定理解三角形边与角】
【例1】(2024·全国·模拟预测)在中,,则( )
A. B. C. D.
【答案】A
【解析】由余弦定理得,则.
由正弦定理得,即,所以.故选:A.
【变式1-1】(2024·全国·模拟预测)在中,,则( )
A. B. C. D.
【答案】A
【解析】由,得,又,所以,
由余弦定理得,得,
由正弦定理得,即,所以,故选:A.
【变式1-2】(2023·新疆·校联考一模)在中,角的对应边是,且,则( )
A. B. C. D.
【答案】B
【解析】因为,所以由余弦定理可得,
利用正弦定理边化角得,
因为,所以,且,
由得,
所以,
整理得,解得或,
所以或,
又,所以,所以.故选:B
【变式1-3】(2024·湖北武汉·高三统考期末)已知在中,,,则( )
A. B. C. D.
【答案】A
【解析】
因为,故且,
故,且,故,
故,
而,故,
故,
故,故选:A.
【变式1-4】(2024·吉林长春·东北师大附中校联考模拟预测)在中,角的对边分别为,已知.
(1)求;
(2)若,且,求.
【答案】(1);(2)
【解析】(1).
由正弦定理,可得
又,.
(2),设,则,
在中,.
在与中,.
.
【题型2 正弦定理判定三角形解的个数】
【例2】(2023·山东临沂·高三校考阶段练习)(多选)在中,内角,,所对的边分别为,,,根据下列条件判断三角形的情况,则正确的是( )
A.,,,有两解 B.,,,有两解
C.,,,只有一解 D.,,,只有一解
【答案】CD
【解析】对于A,因为,,则,由正弦定理,
得,显然有唯一结果,即只有一解,A错误;
对于B,,,,
由正弦定理得,无解,B错误;
对于C,,,,有,则,
由正弦定理得,有唯一解,C正确;
对于D,,,,有,则,
此时,有唯一解,D正确.故选:CD
【变式2-1】(2022·河北张家口·高三校联考期中)(多选)在中,内角所对的边分别为,根据下列条件解三角形,其中有两解的是( )
A. B.
C. D.
【答案】BC
【解析】对于A,因为,所以,所以只有一解;故A错误;
对于B,因为,所以由正弦定理得,
因为,即,所以,
所以有两解(,或),故B正确;
对于C,因为,
所以由正弦定理得,即,
因为,所以有两解(,或,),故C正确;
对于D,因为,
所以由正弦定理得,
由于,故,所以只有一解,故D错误;故选:BC
【变式2-2】(2023·北京顺义·高三牛栏山一中校考期中)在中,,,,满足条件的( )
A.有无数多个 B.有两个 C.有一个 D.不存在
【答案】D
【解析】因为,,,
由正弦定理,即,所以,
又,由正弦函数的性质可得不存在,所以满足条件的不存在.故选:D
【变式2-3】(2023·浙江·模拟预测)在中,角所对的边分别为.若,且该三角形有两解,则的范围是( )
A. B. C. D.
【答案】B
【解析】由正弦定理得,所以,
因为该三角形有两解,故,
故,即,故选:B
【变式2-4】(2023·安徽·池州市第一中学校联考模拟预测)(多选)在中,,若满足条件的三角形有两个,则边的取值可能是( )
A.1.5 B.1.6 C.1.7 D.1.8
【答案】BC
【解析】根据题意可得:满足条件的有两个,可得,故选:BC
【题型3 正、余弦定理判断三角形形状】
【例3】(2023·安徽芜湖·统考模拟预测)记的内角的对边分别为,,,若,则为( )
A.等腰三角形 B.直角三角形 C.等腰直角三角形 D.等腰或直角三角形
【答案】D
【解析】由,得,
由正弦定理得,所以,
因为,所以或,
所以或.即是等腰或直角三角形,故选:D.
【变式3-1】(2023·全国·高三专题练习)在中,,,分别为角,,的对边,已知.若,,成等比数列,则是( )
A.直角三角形 B.等边三角形 C.等腰三角形 D.不确定
【答案】B
【解析】因为,由诱导公式得,
由正弦定理得,
又,所以,即,
又,所以.
又因为,,成等比数列,所以,
由余弦定理得,解得,
所以为等边三角形,故选:B.
【变式3-2】(2023·甘肃酒泉·统考三模)中,,,分别是角,,的对边,且,则的形状为( )
A.直角三角形 B.锐角三角形 C.直角或钝角三角形 D.钝角三角形
【答案】D
【解析】因为,,
所以,即,
所以,即,
所以,所以,
又因为,所以,所以为钝角三角形.故选:D.
【变式3-3】(2022·内蒙古呼伦贝尔·高三海拉尔第一中学校考阶段练习)的内角的对边分别为,且,则的形状为( )
A.等边三角形 B.直角三角形 C.等腰直角三角形 D.等边三角形或直角三角形
【答案】B
【解析】∵,∴,即,
又由余弦定理可得,
∴,可得:
∴是以∠C为直角的直角三角形.故选:B.
【变式3-4】(2024·新疆乌鲁木齐·高三乌鲁木齐市十二中校考阶段练习)在中,角A,B,C的对边分别为a,b,c,若,则的形状是( )
A.等腰三角形或直角三角形 B.直角三角形 C.等腰三角形 D.等边三角形
【答案】B
【解析】,故,
由正弦定理得,
其中,
即,故,
因为,所以,故,
因为,所以,的形状为直角三角形,故选:B
【题型4 求三角形(四边形)的面积】
【例4】(2024·江西上饶·高三校考阶段练习)在中,,,分别为,,的对边,且,,的面积为,那么等于( )
A. B. C. D.
【答案】B
【解析】由,可得,
又,且,
得,
所以,则,故选:B
【变式4-1】(2024·陕西渭南·统考一模)在中,,,,则的面积为 .
【答案】
【解析】由余弦定理可知,
即,解得;
所以的面积为.
【变式4-2】(2023·湖南长沙·高三统考阶段练习)在中,角所对的边分别为,已知成等差数列,,则的面积为( )
A.3 B. C.12 D.16
【答案】B
【解析】因为成等差数列,可得,
又因为,
由余弦定理得:,
整理得,即,
所以的面积为,故选:B.
【变式4-3】(2024·重庆长寿·高三统考期末)在中,,且的面积为,则( )
A. B. C.2 D.3
【答案】B
【解析】因为,所以,解得,
由余弦定理可得,所以.故选:B.
【变式4-4】(2024·陕西西安·统考一模)在三角形中,内角的对边分别为,,,已知,,,则的面积为( )
A. B. C. D.
【答案】B
【解析】,由正弦定理得,
因为,所以,
故,即,故,
因为,所以,故,解得,
由余弦定理得,即,
因为,,所以,解得,
,故选:B
【题型5 三角形的外接圆问题】
【例5】(2023·江苏徐州·高三校考阶段练习)已知的内角A,B,C的对边分别为a,b,c,且,,则外接圆的半径为( )
A. B. C. D.
【答案】B
【解析】由题意得,所以,
设外接圆的半径为,
则由正弦定理得,所以,故选:B.
【变式5-1】(2023·河北石家庄·高三校联考阶段练习)在中,角A,B,C的对边分别是a,b,c,已知,,则外接圆的半径为( ).
A. B. C. D.3
【答案】A
【解析】因为为锐角,所以.
设外接圆的半径为,
因为,所以,故选:A
【变式5-2】(2022·辽宁葫芦岛·高三校联考阶段练习)在中,内角A,B,C的对边分别为a,b,c,已知,,则外接圆的半径为( )
A. B. C. D.
【答案】A
【解析】因为,所以,
因为,所以,所以外接圆的半径为,故选:A.
【变式5-3】(2022·河南南阳·高三统考期中)在中, 角,,所对的边分别为,,,,则的外接圆面积为( )
A. B. C. D.
【答案】D
【解析】由正弦定理可知,,
即
,因为,,
,根据正弦定理可知,得,
则的外接圆面积,故选:D
【变式5-4】(2023·湖南娄底·高三涟源市第一中学校联考阶段练习)在中,内角A,B,C的对边分别为a,b,c,若,,则的外接圆的面积为( )
A. B. C. D.
【答案】B
【解析】因为,所以,
所以,即,
又,所以,所以,所以.
因为,
由余弦定理得,即,
又,所以,所以,
由正弦定理得,所以.
设的外接圆的半径为,所以,解得,
所以的外接圆的面积为,故选:B.
【题型6 证明三角形中恒等式或不等式】
【例6】(2024上·江西赣州·高三统考期末)在中,角A,B,C所对的边分别为a,b,c,.
(1)证明:;
(2)记边AB和BC上的高分别为和,若,判断的形状.
【答案】(1)证明见解析;(2)直角三角形.
【解析】(1)因为,由正弦定理得,,
整理可得,,
又,
于是,即,
因为,所以,
所以或(舍去),所以;
(2)根据等面积法可知,即,
由,可得,
又由及正弦定理可得,,解得,
由于,所以,
所以,所以是直角三角形.
【变式6-1】(2024·湖南长沙·统考一模)在中,角,,所对的边长分别为,,,且满足.
(1)证明:;
(2)如图,点在线段的延长线上,且,,当点运动时,探究是否为定值?
【答案】(1)证明见解析;(2)为定值.
【解析】(1)因为,
由正弦定理可得,
再由余弦定得得,整理得.
(2)因为互补,所以,
结合余弦定理可得,
因为,,则,
整理得,又,
则,
从而,故为定值.
【变式6-2】(2023·全国·高三校联考阶段练习)记的内角的对边分别为,已知.
(1)证明:;
(2)若,,求.
【答案】(1)证明见解析;(2)
【解析】(1)因为,
所以,
因为为的内角,即,
所以或,得或(舍去),所以.
(2)由(1)得,
由,及正弦定理,得,
则,得,
所以,
由余弦定理得,即,
整理得,解得或(舍去),所以.
【变式6-3】(2024·河南焦作·高三统考期末)已知中,角A,B,C所对的边分别为a,b,c,且.
(1)证明:;
(2)若,求的值.
【答案】(1)证明见解析;(2)
【解析】(1)证明:由正弦定理及条件可得,
由余弦定理可得,化简得.
(2)由得,
化简得,又,故,
所以,故.
【变式6-4】(2024上·海南海口·高三海南中学校考阶段练习)记的内角A,B,C的对边分别为﹐已知.
(1)若,求B;
(2)证明:.
【答案】(1);(2)证明见解析
【解析】(1)由,可得,,
而,所以,
即有,而,显然,
所以,而,,所以.
(2)由可得,
,
再由正弦定理可得,
然后根据余弦定理可知,,
化简得:,故原等式成立.
【题型7 距离、高度、角度的测量】
【例7】(2023·江苏南通·高三海门中学校考阶段练习)如图,某人为测量塔高,在河对岸相距的,处分别测得,,(其中,与塔底在同一水平面内),则塔高( )
A. B. C. D.
【答案】A
【解析】在中,由正弦定理得,,则,
在中,.故选:A
【变式7-1】(2023·福建厦门·高三湖滨中学校考阶段练习)如图是隋唐天坛,古叫圜丘,它位于唐长安城明德门遗址东约950米,即今西安市雁塔区陕西师范大学以南.天坛初建于隋而废弃于唐末,比北京明清天坛早1000多年,是隋唐王朝近三百年里的皇家祭天之处.某数学兴趣小组为了测得天坛的直径,在天坛外围测得AB=60米,BC=60米,CD=40米,∠ABC=60°,∠BCD=120°,据此可以估计天坛的最下面一层的直径AD大约为(结果精确到1米)(参考数据:≈1.414,≈1.732,≈2.236,≈2.646)( )
A.53 B.55 C.57 D.60
【答案】A
【解析】如图,连接,
在中,,
则是等边三角形,,
由,得,而,在中,由余弦定理得:
(米).故选:A
【变式7-2】(2023·宁夏石嘴山·石嘴山市第三中学校考模拟预测)某校学生参加课外实践活动“测量一土坡的倾斜程度”,在坡脚A处测得,沿土坡向坡顶前进后到达D处,测得.已知旗杆,土坡对于地平面的坡角为,则( )
A. B. C. D.
【答案】D
【解析】在中,由正弦定理可得
在中,易知,
则
整理可得,故选:D
【变式7-3】(2022·吉林·统考模拟预测)位于灯塔A处正西方向相距n mile的B处有一艘甲船需要海上救援,位于灯塔A处北偏东45°相距n mile的C处的一艘乙船前往营救,则乙船的目标方向线(由观测点看目标的视线)的方向是南偏西( )
A.30° B.60° C.75° D.45°
【答案】B
【解析】依题意,过点作的延长线交于点,如图,
则,,,
在中,,
在中,,,
又,,
则乙船的目标方向线(由观测点看目标的视线)的方向是南偏西60°,故选:B.
【变式7-4】(2024·全国·高三专题练习)鄂州十景之一“二宝塔”中的文星塔位于文星路与南浦路交汇处,至今已有四百六十多年的历史,该塔为八角五层楼阁式砖木混合结构塔.现在在塔底共线三点、、处分别测塔顶的仰角为、、,且m,则文星塔高为 m.
【答案】
【解析】如图所示,设建筑物的高为,
则,,,
由余弦定理可得,
,
因为,故,
即,可得.
【题型8 正余弦定理与三角函数综合】
【例8】(2024·甘肃兰州·高三校考阶段练习)已知函数.
(1)求函数的最值及取得最值时的取值集合;
(2)设的内角A,B,C的对边分别为a,b,c,若,,且,求的面积.
【答案】(1)答案见解析;(2)或
【解析】(1),
,,,
易知的最大值为,此时,化简得,
的最小值为,此时,化简得,
综上当时,取到最小值,当时,取到最大值.
(2)在中,结合,故,解得(其它解舍去),
故由余弦定理得,
由已知得,
由正弦定理得,
联立方程组,解得或,
当,时,,
当,时,.
【变式8-1】(2023·四川绵阳·高三南山中学校考阶段练习)已知函数.
(1)求的最小正周期;
(2)在中,分别是角的对边,若,,且的面积为,求外接圆的半径.
【答案】(1);(2)2
【解析】(1) ,
的最小正周期;
(2)由,可得,又,
,, ,
由,得,
由余弦定理得:,得,
由正弦定理得外接圆的半径.
【变式8-2】(2024·全国·模拟预测)在平面直角坐标系xOy中,点,,,点D是线段EF上靠近点F的三等分点,且.
(1)求函数的最小值;
(2)在中,角A,B,C所对的边分别是a,b,c,,,的面积为,求a的值.
【答案】(1)3;(2)
【解析】(1)∵,,,
点D是线段EF上靠近点F的三等分点,,则,
∴,
∴,
∴.
由,得,
∴当,即时,取得最小值,为.
(2)由(1)及,得,则,
由,得
∴,则.
由,可得,
在中,由余弦定理得,∴.
【变式8-3】(2023·福建泉州·高三德化第一中学校联考阶段练习)已知函数
(1)当,求的最值,及取最值时对应的的值;
(2)在中,为锐角,且,求的面积.
【答案】(1),;,;(2)
【解析】(1),
,,
当,即时,;
当,即时,;
(2)由,即,
而为锐角,,则,,
又,
由余弦定理得,即,即,
.
【变式8-4】(2023·河北石家庄·高三石家庄市第二十七中学校考阶段练习)已知函数
(1)求函数的最小正周期;
(2)在中,内角A,B,C所对的边分别为a,b,c,若,内切圆面积为,求的最小值;
【答案】(1);(2)6.
【解析】(1)由题设,
所以函数的最小正周期.
(2)由题设,而,则,
又内切圆面积为,则内切圆半径,如下图示,
为内切圆圆心,为切点,则,
由圆切线的性质有,显然,
又,即,
所以,结合基本不等式得,
可得(舍)或,则,当且仅当时取等号,
由,故的最小值为6.
(建议用时:60分钟)
1.(2024·四川自贡·统考一模)在中角所对边满足,则( )
A.4 B.5 C.6 D.6或
【答案】A
【解析】依题意,,
由余弦定理得,
解得,故选:A
2.(2023·海南·校考模拟预测)的内角A,B,C的对边分别为,已知,,,则( )
A. B. C. D.
【答案】D
【解析】由余弦定理,,
因为,所以,
即,解得(舍),
所以,,故选:D
3.(2022·全国·高三校联考专题练习)已知的内角A,B,C的对边分别为a,b,c若a,b,c成等比数列,且,则( )
A. B. C. D.
【答案】B
【解析】因为,,满足成等比数列,得,且,得,
a由余弦定理,,故选:B .
4.(2023·内蒙古鄂尔多斯·高三期末)若在中满足:则边上的高为( )
A. B. C. D.
【答案】B
【解析】因为
所以由余弦定理可得
即,解得,或(舍去),
设边上的高为,
则,即,故选:B.
5.(2023·新疆·高三校联考期中)在中,已知向量,向量,若,则( )
A. B. C. D.1
【答案】C
【解析】因为,则,
即,
设角的对边分别为,根据正弦定理可得,
即,由余弦定理得,
且,可知,所以,故选:C.
6.(2023·湖南·校联考模拟预测)在中,,,且的面积为,则( )
A. B. C. D.
【答案】D
【解析】设中角所对的边分别为,
因为,所以由正弦定理可得,
又解得,
所以由余弦定理可得,
因为,所以,故选:D
7.(2023·全国·模拟预测)在中,,则下列结论不成立的是( )
A. B.
C. D.
【答案】D
【解析】因为,由正弦定理可得,所以A正确;
由,
,
由,可得,所以B正确;
由,
又由B可知,所以C正确;
由,所以D错误.故选:D.
8.(2024·全国·模拟预测)已知中,角的对边分别是,且, 的外接圆半径为, 边上的高为2,则( )
A.5 B.6 C.8 D.9
【答案】B
【解析】由,得,整理得,
由正弦定理得,
则,则,
则.
因为,所以,所以.
由于,所以.且.
,得,
由余弦定理得,即,因此,
则,所以,故选:B.
9.(2024·全国·模拟预测)在中,内角A,B,C所对的边分别为a,b,c,若,,,则的面积为( )
A. B. C. D.
【答案】A
【解析】由及正弦定理,得,
所以,且A,C均为锐角.
由,得,
两边同时除以,得,
与联立得,,
则,
所以,,,
所以,
因为,所以,
所以的面积,故选:A.
10.(2023·江苏南通·高三校考开学考试)塔是一种在亚洲常见的,有着特定的形式和风格的中国传统建筑.如图,为测量某塔的总高度AB,选取与塔底B在同一水平面内的两个测量基点C与D,现测得,,米,在C点测得塔顶A的仰角为,则塔的总高度为( )
A. B. C. D.
【答案】D
【解析】在中,,,
则,
,
由正弦定理得,即,
所以,得,
在直角中,,则
,故选:D
11.(2024·辽宁大连·高三统考期末)(多选)在中,角的对边分别是,若,,则( )
A. B. C. D.的面积为
【答案】AC
【解析】由余弦定理可得,解得,故A正确;
由及正弦定理,可得,
化简可得.
因为,所以,所以,即.
因为,所以,故B错误;
因为,所以且,代入,
可得,解得,.
因为,,,
所以由正弦定理可得,
由,可得,
化简可得,解得或(舍),故C正确;
.故选:AC.
12.(2024·广东肇庆·统考模拟预测)(多选)若的三个内角的正弦值为,则( )
A.一定能构成三角形的三条边
B.一定能构成三角形的三条边
C.一定能构成三角形的三条边
D.一定能构成三角形的三条边
【答案】AD
【解析】对于A,由正弦定理得,
所以,,作为三条线段的长一定能构成三角形,A正确,
对于B,由正弦定理得,
例如,则,
由于,,故不能构成三角形的三条边长,故B错误,
对于C, 由正弦定理得,
例如:、、,则、、,
则,,,作为三条线段的长不能构成三角形,C不正确;
对于D,由正弦定理可得,
不妨设,则,故,且,
所以,故D正确,故选:AD
13.(2023·河北石家庄·高三石家庄市第二十七中学校考阶段练习)(多选)在中,角A,B,C的对边分别为a,b,c,下列四个命题中,正确的有( )
A.当时,满足条件的三角形共有1个
B.若是钝角三角形,则
C.若,则
D.当时,的周长为
【答案】BD
【解析】对于A选项:由余弦定理有:……①
代入①式有:……②
上式判别式,故②式无解,即不存在,故A选项错误.
对于B选项:当时,;故显然成立;
当时,……③
对③式两边同乘以有:;当时,;
故显然成立;
综上所述三种情况都有:恒成立,故B选项正确;
对于C选项:
当时,,
当时,时,得不出,故C选项错误.
对于D选项:……④
上式化简有:
即:……⑤
由⑤式得:,故,所以,
故.故D选项正确.故选:BD.
14.(2023·浙江湖州·高三湖州市第二中学校考期中)(多选)已知的内角所对的边分别为,下列四个命题中正确的是( )
A.若,则一定是等腰三角形
B.若,则是等腰三角形
C.若,则一定是等边三角形
D.若,则是直角三角形
【答案】BC
【解析】对于A,若,由正弦定理得,
即,又,
则或,即或,
所以三角形为等腰三角形或直角三角形,故A错误;
对于B,若,
则由正弦定理得,
又,则或(舍去),则是等腰三角形,故B正确;
对于C,若,
由正弦定得理,即,
又为三角形内角,所以,三角形是等边三角形,故C正确;
对于D,由于,
由余弦定理可得,可得,解得,
所以,故是等边三角形,故D错误.故选:BC.
15.(2023·全国·高三校联考阶段练习)记△的内角的对边分别为,若,,则 .
【答案】
【解析】由余弦定理及可知,,
所以,即,
整理得,=
所以,或(舍去),所以,则,
由于,所以.
16.(2024·四川攀枝花·统考二模)的内角A、B、C的对边分别为a、b、c,且,则 .
【答案】
【解析】由,
由余弦定理得,
由正弦定理得,
因为,
即,
即,
因为,则,
因为,故.
17.(2023·全国·校联考模拟预测)在中,角A,B,C所对应的边为a,b,c.若的面积,其外接圆半径,且,则 .
【答案】或
【解析】由题可知的面积,即,则;
由外接圆半径,得,
故,
结合,
得,
即,
由于,故,
又,故或.
18.(2024·山西晋城·统考一模)在中,,,.
(1)求A的大小;
(2)求外接圆的半径与内切圆的半径.
【答案】(1);(2)
【解析】(1)由余弦定理得,
因为,所以.
(2)设外接圆的半径与内切圆的半径分别为,,
由正弦定理得,则.
的面积,
由,得.
19.(2023·山西·高三校联考阶段练习)如图,在四边形中,.
(1)证明:.
(2)证明:.
【答案】(1)证明见解析;(2)证明见解析
【解析】(1)在中,由正弦定理得,
所以,解得,
所以,则.
(2)由(1)知,
在中,由余弦定理得,
则.
在中,.所以,
因为,所以,
所以,
故.
20.(2023·上海静安·高三校考阶段练习)已知函数
(1)求函数的最小正周期及函数在上的最大值;
(2)在△ABC中,角A,B,C的对边分别为a,b,c,且求sinB的值.
【答案】(1)最小正周期为,最大值为2;(2)
【解析】(1)
所以函数的最小正周期.
当时,,
所以当即时,取得最大值,且.
(2),则.
因为,则所以.
由余弦定理 ,可得 ,解得或(舍).
根据正弦定理,可得.满分技巧
利用正、余弦定理求解三角形的边角问题,实质是实现边角的转化,解题的思路是:
1、选定理.
(1)已知两角及一边,求其余的边或角,利用正弦定理;
(2)已知两边及其一边的对角,求另一边所对的角,利用正弦定理;
(3)已知两边及其夹角,求第三边,利用余弦定理;
(4)已知三边求角或角的余弦值,利用余弦定理的推论;
(5)已知两边及其一边的对角,求另一边,利用余弦定理;
2、巧转化:化边为角后一般要结合三角形的内角和定理与三角恒等变换进行转化;若将条件转化为边之间的关系,则式子一般比较复杂,要注意根据式子结构特征灵活化简.
3、得结论:利用三角函数公式,结合三角形的有关性质(如大边对大角,三角形的内角取值范围等),并注意利用数形结合求出三角形的边、角或判断出三角形的形状等。
满分技巧
已知三角形的两角和任意一边,求其他的边和角,此时有唯一解,三角形被唯一确定;
已知三角形的两边和其中一边的对角,求其他的边和角,此时可能出现一解、两解或无解的情况,三角形不能被唯一确定。
(1)从代数的角度分析:以已知和,解三角形为例
由正弦定理、正弦函数的有界性及三角形的性质可得:
= 1 \* GB3 ①若,则满足条件的三角形的个数为0;
= 2 \* GB3 ②若,则满足条件的三角形的个数为1;
= 3 \* GB3 ③若,则满足条件的三角形的个数为1或者2;
显然由若可得有两个值,一个大于,一个小于,考虑“大边对大角”、“三角形内角和等于”等,此时需进行分类讨论。
(2)画图法:以已知角的对边为半径画圆弧,通过与邻边的交点个数判断解的个数
在△ABC中,已知a,b和A时,解的情况如下:
当A为锐角时:
当A为钝角时
满分技巧
判定三角形形状的两种常用途径
1、角化边:利用正弦定理、余弦定理化角为边,通过代数恒等变换,求出边与边之间的关系进行判断;
2、边化角:通过正弦定理和余弦定理,化边为角,利用三角变换得出三角形内角之间的关系进行判断
满分技巧
1、常用的三角形面积公式:
在中,内角,,所对的边分别为a,b,c,边,,边上的高分别记作,,,为内切圆半径,为外接圆半径,为内切圆心。
(1)
(2)
(3)
(4)
2、与三角形面积有关问题的解题策略
(1)利用正弦、余弦定理解三角形,求出三角形的相关边、角之后,直接求三角形的面积;
(2)把面积作为已知条件之一,与正弦、余弦定理结合求出三角形的其他量。
满分技巧
正弦定理:(其中为外接圆半径)
满分技巧
解三角形的实际应用问题的类型及解题策略
1、求距离、高度问题
(1)选定或确定要创建的三角形,要先确定所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的量.
(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.
2、求角度问题
(1)分析题意,分清已知与所求,再根据题意画出正确的示意图,这是最关键、最重要的一步,画图时,要明确仰角、俯角、方位角以及方向角的含义,并能准确找到这些角.
(2)将实际问题转化为可用数学方法解决的问题后,注意正、余弦定理的综合应用.
热点8-2 概率与统计综合(10题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用): 这是一份热点8-2 概率与统计综合(10题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用),文件包含热点8-2概率与统计综合10题型+满分技巧+限时检测原卷版docx、热点8-2概率与统计综合10题型+满分技巧+限时检测解析版docx等2份试卷配套教学资源,其中试卷共62页, 欢迎下载使用。
热点2-5 导数的应用-单调性与极值(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用): 这是一份热点2-5 导数的应用-单调性与极值(8题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用),文件包含热点2-5导数的应用-单调性与极值8题型+满分技巧+限时检测原卷版docx、热点2-5导数的应用-单调性与极值8题型+满分技巧+限时检测解析版docx等2份试卷配套教学资源,其中试卷共49页, 欢迎下载使用。
热点2-4 导数的切线问题(6题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用): 这是一份热点2-4 导数的切线问题(6题型+满分技巧+限时检测)-2024年高考数学【热点·重点·难点】专练(新高考专用),文件包含热点2-4导数的切线问题6题型+满分技巧+限时检测原卷版docx、热点2-4导数的切线问题6题型+满分技巧+限时检测解析版docx等2份试卷配套教学资源,其中试卷共28页, 欢迎下载使用。