![七年级下册数学5.3.1平行线的性质练习含答案01](http://img-preview.51jiaoxi.com/2/3/15541300/0-1711442239465/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![七年级下册数学5.3.1平行线的性质练习含答案02](http://img-preview.51jiaoxi.com/2/3/15541300/0-1711442239533/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![七年级下册数学5.3.1平行线的性质练习含答案03](http://img-preview.51jiaoxi.com/2/3/15541300/0-1711442239609/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
- 七年级下册数学5.1.3同位角、内错角、同旁内角练习含答案 试卷 1 次下载
- 七年级下册数学5.2平行线及其判定练习含答案 试卷 1 次下载
- 七年级下册数学5.3.2命题、定理、证明练习含答案 试卷 1 次下载
- 七年级下册数学5.4平移练习含答案 试卷 1 次下载
- 七年级下册数学6.1平方根练习含答案 试卷 3 次下载
人教版5.3.1 平行线的性质课堂检测
展开课堂学习检测
一、填空题
1.平行线具有如下性质:
(1)性质1:______被第三条直线所截,同位角______.这个性质可简述为两直线______,同位角______.
(2)性质2:两条平行线__________________,_______相等.这个性质可简述为______
_______,_____________.
(3)性质3:__________________,同旁内角______.这个性质可简述为_____________,
__________________.
2.同时______两条平行线,并且夹在这两条平行线间的______________叫做这两条平行线的距离.
二、根据已知条件推理
3.如图,请分别根据已知条件进行推理,得出结论,并在括号内注明理由.
(1)如果AB∥EF,那么∠2=______.理由是____________________________________.
(2)如果AB∥DC,那么∠3=______.理由是____________________________________.
(3)如果AF∥BE,那么∠1+∠2=______.理由是______________________________.
(4)如果AF∥BE,∠4=120°,那么∠5=______.理由是________________________.
4.已知:如图,DE∥AB.请根据已知条件进行推理,分别得出结论,并在括号内注明理由.
(1)∵DE∥AB,( )
∴∠2=______.(__________,__________)
(2)∵DE∥AB,( )
∴∠3=______.(__________,__________)
(3)∵DE∥AB( ),
∴∠1+______=180°.(______,______)
综合、运用、诊断
一、解答题
5.如图,∠1=∠2,∠3=110°,求∠4.
解题思路分析:欲求∠4,需先证明______∥______.
解:∵∠1=∠2,( )
∴______∥______.(__________,__________)
∴∠4=______=______°.(__________,__________)
6.已知:如图,∠1+∠2=180°.求证:∠3=∠4.
证明思路分析:欲证∠3=∠4,只要证______∥______.
证明:∵∠1+∠2=180°,( )
∴______∥______.(__________,__________)
∴∠3=∠4.(______,______)
7.已知:如图,AB∥CD,∠1=∠B.
求证:CD是∠BCE的平分线.
证明思路分析:欲证CD是∠BCE的平分线,
只要证______=______.
证明:∵AB∥CD,( )
∴∠2=______.(____________,____________)
但∠1=∠B,( )
∴______=______.(等量代换)
即CD是________________________.
8.已知:如图,AB∥CD,∠1=∠2.求证:BE∥CF.
证明思路分析:欲证BE∥CF,只要证______=______.
证明:∵AB∥CD,( )
∴∠ABC=______.(____________,____________)
∵∠1=∠2,( )
∴∠ABC-∠1=______-______,( )
即______=______.
∴BE∥CF.(__________,__________)
9.已知:如图,AB∥CD,∠B=35°,∠1=75°.求∠A的度数.
解题思路分析:欲求∠A,只要求∠ACD的大小.
解:∵CD∥AB,∠B=35°,( )
∴∠2=∠______=_______°.(____________,____________)
而∠1=75°,
∴∠ACD=∠1+∠2=______°.
∵CD∥AB,( )
∴∠A+______=180°.(____________,____________)
∴∠A=_______=______.
10.已知:如图,四边形ABCD中,AB∥CD,AD∥BC,∠B=50°.求∠D的度数.
分析:可利用∠DCE作为中间量过渡.
解法1:∵AB∥CD,∠B=50°,( )
∴∠DCE=∠_______=_______°.
(____________,______)
又∵AD∥BC,( )
∴∠D=∠______=_______°.(____________,____________)
想一想:如果以∠A作为中间量,如何求解?
解法2:∵AD∥BC,∠B=50°,( )
∴∠A+∠B=______.(____________,____________)
即∠A=______-______=______°-______°=______°.
∵DC∥AB,( )
∴∠D+∠A=______.(_____________,_____________)
即∠D=______-______=______°-______°=______°.
11.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.
解:过P点作PM∥AB交AC于点M.
∵AB∥CD,( )
∴∠BAC+∠______=180°.( )
∵PM∥AB,
∴∠1=∠_______,( )
且PM∥_______.(平行于同一直线的两直线也互相平行)
∴∠3=∠______.(两直线平行,内错角相等)
∵AP平分∠BAC,CP平分∠ACD,( )
______,______.( )
.( )
∴∠APC=∠2+∠3=∠1+∠4=90°.( )
总结:两直线平行时,同旁内角的角平分线______.
拓展、探究、思考
12.已知:如图,AB∥CD,EF⊥AB于M点且EF交CD于N点.求证:EF⊥CD.
13.如图,DE∥BC,∠D∶∠DBC=2∶1,∠1=∠2,求∠E的度数.
14.问题探究:
(1)如果一个角的两条边与另一个角的两条边分别平行,那么这两个角的大小有何关系?举例说明.
(2)如果一个角的两边与另一个角的两边分别垂直,那么这两个角的大小有何关系?举例说明.
15.如图,AB∥DE,∠1=25°,∠2=110°,求∠BCD的度数.
16.如图,AB,CD是两根钉在木板上的平行木条,将一根橡皮筋固定在A,C两点,点E是橡皮筋上的一点,拽动E点将橡皮筋拉紧后,请你探索∠A,∠AEC,∠C之间具有怎样的关系并说明理由.(提示:先画出示意图,再说明理由).
答案:
1.(1)两条平行线,相等,平行,相等.
(2)被第三条直线所截,内错角,两直线平行,内错角相等.
(3)两条平行线被第三条直线所截,互补.两直线平行,同旁内角互补.
2.垂直于,线段的长度.
3.(1)∠5,两直线平行,内错角相等.
(2)∠1,两直线平行,同位角相等.
(3)180°,两直线平行,同旁内角互补.
(4)120°,两直线平行,同位角相等.
4.(1)已知,∠5,两直线平行,内错角相等.
(2)已知,∠B,两直线平行,同位角相等.
(3)已知,∠2,两直线平行,同旁内角互补.
5~12.略.
13.30°.
14.(1)(2)均是相等或互补.
15.95°.
16.提示:
这是一道结论开放的探究性问题,由于E点位置的不确定性,可引起对E点不同位置的分类讨论.本题可分为AB,CD之间或之外.
如:
结论:①∠AEC=∠A+∠C ②∠AEC+∠A+∠C=360°
③∠AEC=∠C-∠A ④∠AEC=∠A-∠C
⑤∠AEC=∠A-∠C ⑥∠AEC=∠C-∠A.
数学七年级下册5.3.1 平行线的性质练习: 这是一份数学七年级下册5.3.1 平行线的性质练习,共8页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版七年级下册5.3.1 平行线的性质课时训练: 这是一份人教版七年级下册5.3.1 平行线的性质课时训练,共7页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质课时训练: 这是一份人教版七年级下册第五章 相交线与平行线5.3 平行线的性质5.3.1 平行线的性质课时训练,共5页。