终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    最新中考数学总复习真题探究与变式训练(讲义) 专题07 一次函数(5大考点)

    立即下载
    加入资料篮
    资料中包含下列文件,点击文件名可预览资料内容
    • 原卷
      专题07 一次函数(5大考点)(原卷版).docx
    • 解析
      专题07 一次函数(5大考点)(解析版).docx
    专题07 一次函数(5大考点)(原卷版)第1页
    专题07 一次函数(5大考点)(原卷版)第2页
    专题07 一次函数(5大考点)(原卷版)第3页
    专题07 一次函数(5大考点)(解析版)第1页
    专题07 一次函数(5大考点)(解析版)第2页
    专题07 一次函数(5大考点)(解析版)第3页
    还剩24页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    最新中考数学总复习真题探究与变式训练(讲义) 专题07 一次函数(5大考点)

    展开

    这是一份最新中考数学总复习真题探究与变式训练(讲义) 专题07 一次函数(5大考点),文件包含专题07一次函数5大考点原卷版docx、专题07一次函数5大考点解析版docx等2份试卷配套教学资源,其中试卷共101页, 欢迎下载使用。
    一、复习方法
    1.以专题复习为主。 2.重视方法思维的训练。
    3.拓宽思维的广度,培养多角度、多维度思考问题的习惯。
    二、复习难点
    1.专题的选择要准,安排时间要合理。 2.专项复习要以题带知识。
    3.在复习的过程中要兼顾基础,在此基础上适当增加变式和难度,提高能力。
    第三部分 函数
    专题07 一次函数(5大考点)
    核心考点一 一次函数的概念
    例1 (2022·山东济南·统考中考真题)某学校要建一块矩形菜地供学生参加劳动实践,菜地的一边靠墙,另外三边用木栏围成,木栏总长为40m.如图所示,设矩形一边长为xm,另一边长为ym,当x在一定范围内变化时,y随x的变化而变化,则y与x满足的函数关系是( )
    A.正比例函数关系B.一次函数关系
    C.反比例函数关系D.二次函数关系
    【答案】B
    【分析】根据矩形周长找出关于x和y的等量关系即可解答.
    【详解】解:根据题意得:

    ∴,
    ∴y与x满足的函数关系是一次函数;
    故选:B.
    【点睛】本题通过矩形的周长考查一次函数的定义,解题的关键是理清实际问题中的等量关系准确地列式.
    例2 (2021·江苏盐城·统考中考真题)如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则直线的函数表达式是__________.
    【答案】
    【分析】先根据一次函数求得、坐标,再过作的垂线,构造直角三角形,根据勾股定理和正余弦公式求得的长度,得到点坐标,从而得到直线的函数表达式.
    【详解】因为一次函数的图像分别交、轴于点、,则,,则.过作于点,因为,所以由勾股定理得,设,则,根据等面积可得:,即,解得.则,即,所以直线的函数表达式是.
    【点睛】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.
    例3 (2022·北京·统考中考真题)在平面直角坐标系中,函数的图象经过点,,且与轴交于点.
    (1)求该函数的解析式及点的坐标;
    (2)当时,对于的每一个值,函数的值大于函数的值,直接写出的取值范围.
    【答案】(1),
    (2)
    【分析】(1)利用待定系数法即可求得函数解析式,当时,求出即可求解.
    (2)根据题意结合解出不等式即可求解.
    【详解】(1)解:将,代入函数解析式得,
    ,解得,
    ∴函数的解析式为:,
    当时,得,
    ∴点A的坐标为.
    (2)由题意得,
    ,即,
    又由,得,
    解得,
    ∴的取值范围为.
    【点睛】本题考查了待定系数法求函数解析式及解不等式,熟练掌握待定系数法求函数解析式及函数的性质是解题的关键.
    知识点、定义
    一般地,形如y=kx+b(k,b为常数,且k≠0)的函数叫做x的一次函数.
    特别地,当一次函数y=kx+b中的b=0时,y=kx(k是常数,k≠0).这时, y叫做x的正比例函数.
    一次函数的一般形式的结构特征:(1)k≠0,(2)x的次数是1;(3)常数b可以为任意实数.
    注意:
    (1)正比例函数是一次函数,但一次函数不一定是正比例函数.
    (2)一般情况下,一次函数的自变量的取值范围是全体实数.
    (3)如果一个函数是一次函数,则含有自变量x的式子是一次的,系数k不等于0,而b可以为任意实数.
    (4)判断一个函数是不是一次函数,就是判断它是否能化成y=kx+b(k≠0)的形式.
    (5)一次函数的一般形式可以转化为含x、y的二元一次方程.
    知识点、一次函数表达式的确定
    先设出函数解析式,再根据条件确定解析式中未知数的系数,从而得出函数解析式的方法叫做待定系数法。
    待定系数法求一次函数解析式的一般步骤
    设:设出含有待定系数k、b的函数解析式y=kx+b.
    列:把两个已知条件(自变量与函数的对应值)代入解析式,得到关于系数k,b的二元一次方程组.
    解:解二元一次方程组,求出k,b.
    还原:将求得的k,b的值代入解析式.
    【变式1】(2022·河南·校联考模拟预测)如图,在平面直角坐标系中,等边的顶点在原点上,在轴上,,为边的中点,将等边向右平移,当点落在直线:上时,点的对应点的坐标为( )
    A.B.C.D.
    【答案】D
    【分析】过作轴于,根据等边三角形的性质得出,求出,根据勾股定理求出,求出点的纵坐标,根据平移的性质得出平移后点的纵坐标不变,把点的纵坐标代入,求出即可.
    【详解】解:过作轴于,
    是等边三角形,,



    由勾股定理得:,
    为的中点,
    点的纵坐标是,
    当将等边向右平移,当点落在直线上时,点的纵坐标还是,
    把代入得:,
    解得:,
    即点的坐标是,
    故选:.
    【点睛】本题考查了一次函数图形上点的坐标特征,坐标与图形变化平移,等边三角形的性质和勾股定理等知识点,能求出点的纵坐标是解此题的关键.
    【变式2】(2021·湖南长沙·长沙市开福区青竹湖湘一外国语学校校考一模)定义:对于给定的一次函数(、为常数,且,把形如的函数称为一次函数的“相依函数”,已知一次函数,若点在这个一次函数的“相依函数”图象上,则的值是( )
    A.1B.2C.3D.4
    【答案】A
    【分析】找出一次函数的“相依函数”,再利用一次函数图象上点的坐标特征,即可求出m的值.
    【详解】解:一次函数的“相依函数”为,
    ∵点P(−2,m)在一次函数的“相依函数”图象上,
    ∴m=−1×(−2)−1=1.
    故选:A.
    【点睛】本题考查了一次函数图象上点的坐标特征,根据“相依函数”的定义,找出一次函数的“相依函数”是解题的关键.
    【变式3】(2022·贵州遵义·统考一模)在平面直角坐标系中,若一次函数的图象过点,,则的值为______.
    【答案】
    【分析】把代入代入一次函数求得,进而代入x=即可求得m的值.
    【详解】解:一次函数的图象过点,

    解得,

    过,

    故答案为-4044.
    【点睛】本题主要考查一次函数图象上点的坐标特征,把点的坐标代入求解一元- 次方程即可.
    【变式4】(2021·山东东营·二模)如图,在平面直角坐标系xOy中,菱形OABC满足点O在原点,点A坐标为(2,0),∠AOC=60°,直线y=﹣3x+b与菱形OABC有交点,则b的取值范围是___.
    【答案】##
    【分析】作CM⊥OA于点M,BN⊥OA于点N,求出B的坐标,然后代入一次函数解析式中,求出b的最大值,再将原点代入一次函数解析式中求出b的最小值即可.
    【详解】解:作CM⊥OA于点M,BN⊥OA于点N,
    ∵∠AOC=60°,∠CMO=90°,
    ∴OM=OC,
    ∵在菱形OABC中,A(2,0),
    ∴OC=OA=2=CB,
    ∴OM=1,
    ∴CM= ,
    ∴C(1,),
    ∴B的横坐标为3,
    ∵OA∥CB,
    ∴BN=CM=,
    ∴B的纵坐标也为,即B(3,),
    当y=-3x+b过O(0,0)时,b最小,最小值为0,
    当y=-3x+b过B(3,)时,b最大,
    把B(3,)代入y=-3x+b,
    解得:b=+9,
    ∴b的取值范围为:0⩽b≤+9,
    故答案为:0⩽b⩽+9.
    【点睛】本题考查了菱形的性质和待定系数法,关键是求出点B的坐标.
    【变式5】(2022·广东佛山·校考三模)我们把一个函数图象上横坐标与纵坐标相等的点称为这个函数的不动点.
    (1)请直接写出函数的不动点的坐标;
    (2)若函数有两个关于原点对称的不动点,,求的值;
    (3)已知函数,若对任意实数,函数恒有两个相异的不动点,请直接写出的取值范围.
    【答案】(1)
    (2)
    (3)
    【分析】(1)设函数y=2-x的不动点M为(m,m),根据定义得到2-m=m,求出m即可求M点坐标;
    (2)由题意可知AB所在直线解析式为y=x,联立方程组,再由根与系数的关系得3-a=0,即可求a的值;
    (3)由题意可得,则△恒成立,对于关于b的一元二次不等式恒成立,只需△,即可.
    (1)
    解:设函数的不动点为,

    解得,

    (2)
    、关于原点对称,且是函数的不动点,
    所在直线解析式为,
    联立方程组,
    整理得,,


    (3)
    由题意可知,,
    整理得,,
    函数恒有两个相异的不动点,
    △,
    恒成立,
    关于的一元二次不等式恒成立,
    △,
    解得.
    【点睛】本题考查二次函数的图象及性质,弄清定义,熟练掌握一元二次方程根与系数的关系,判别式Δ与根的关系是解题的关键.
    核心考点二 一次函数的图象与性质
    例1 (2022·四川巴中·统考中考真题)在平面直角坐标系中,直线与轴交于点,与轴交于点,将绕点逆时针旋转到如图的位置,的对应点恰好落在直线上,连接,则的长度为( )
    A.B.C.2D.
    【答案】B
    【分析】先求出点A、B的坐标,可求得OA、OB,进而可求得∠OAB=60°,利用旋转的性质和等边三角形的判定与性质证明和为等边三角形得到即可求解.
    【详解】解:对于,
    当时,,当时,由得:,
    则A(1,0),B(0,),
    ∴,,
    ∴,则∠OAB=60°,
    由旋转性质得:,,,
    ∴是等边三角形,
    ∴,又
    ∴是等边三角形,
    ∴,
    故选:B.
    【点睛】本题考查一次函数图象与坐标轴的交点问题、旋转性质、等边三角形的判定与性质、解直角三角形,熟练掌握相关知识的联系与运用,证得是等边三角形是解答的关键.
    例2 (2022·辽宁·统考中考真题)如图,直线y=2x+4与x轴交于点A,与y轴交于点B,点D为OB的中点,▱OCDE的顶点C在x轴上,顶点E在直线AB上,则▱OCDE的面积为_______.
    【答案】2
    【分析】根据一次函数解析式求出点的坐标,根据题意以及平行四边形的性质得出点的坐标,从而得出点的坐标,然后运用平行四边形面积计算公式计算即可.
    【详解】解:当x=0时,y=2×0+4=4,
    ∴点B的坐标为(0,4),OB=4.
    ∵点D为OB的中点,
    ∴OD=OB=×4=2.
    ∵四边形OCDE为平行四边形,点C在x轴上,
    ∴DE∥x轴.
    当y=2时,2x+4=2,
    解得:x=﹣1,
    ∴点E的坐标为(﹣1,2),
    ∴DE=1,
    ∴OC=1,
    ∴▱OCDE的面积=OC•OD=1×2=2.
    故答案为:2.
    【点睛】本题考查了一次函数以及平行四边形的性质,根据题意得出图中各点的坐标是解本题的关键.
    例3 (2022·湖南益阳·统考中考真题)如图,直线y=x+1与x轴交于点A,点A关于y轴的对称点为A′,经过点A′和y轴上的点B(0,2)的直线设为y=kx+b.
    (1)求点A′的坐标;
    (2)确定直线A′B对应的函数表达式.
    【答案】(1)A′(2,0)
    (2)y=﹣x+2
    【分析】(1)利用直线解析式求得点A坐标,利用关于y轴的对称点的坐标的特征解答即可;
    (2)利用待定系数法解答即可.
    【详解】(1)解:令y=0,则x+1=0,
    ∴x=﹣2,
    ∴A(﹣2,0).
    ∵点A关于y轴的对称点为A′,
    ∴A′(2,0).
    (2)解:设直线A′B的函数表达式为y=kx+b,
    ∴,
    解得:,
    ∴直线A′B对应的函数表达式为y=﹣x+2.
    【点睛】本题主要考查了一次函数图象的性质、一次函数图象上点的坐标的特征、待定系数法确定函数的解析式、关于y轴的对称点的坐标的特征等知识,利用待定系数法求函数解析式是解题的关键.
    2、一次函数图象与性质
    【变式1】(2022·山东济南·统考三模)函数与在同一坐标系内的图象可能是( )
    A.B.C.D.
    【答案】C
    【分析】分别讨论和时,一次函数和反比例函数的性质及图像特征,即可得到答案.
    【详解】解:若,则,一次函数单调递减且过点(0,-5),所以一次函数的图像单调递减,过二、三、四象限;反比例函数图像在一、三象限,此时没有选项的图像符合要求.
    若,则,一次函数单调递增且过点(0,-5),所以一次函数的图像单调递增,过一、三、四象限;反比例函数在二、四象限,此时选项C符合要求.
    故选:C.
    【点睛】本题考查一次函数的图像和性质、反比例函数的图像和性质;熟练掌握相关知识是解题的关键.
    【变式2】(2022·山东临沂·统考二模)如图,在平面直角坐标系中,将直线向上平移3个单位,与轴、轴分别交于点A、B,以线段AB为斜边在第一象限内作等腰直角三角形ABC.若反比例函数的图象经过点C,则的值为( )
    A.2B.3C.4D.6
    【答案】C
    【分析】过点C作CE⊥x轴于点E,作CF⊥y轴于点F,根据等腰直角三角形的性质可证出△ACF≌△BCE(AAS),从而得出S矩形OECF=S四边形OBCA=S△AOB+S△ABC,根据直线AB的表达式利用一次函数图象上点的坐标特征可得出点A、B的坐标,结合勾股定理可得出AB的长度,再根据三角形的面积结合反比例函数系数k的几何意义,即可求出k值,此题得解.
    【详解】解:过点C作CE⊥x轴于点E,作CF⊥y轴于点F,如图所示,
    ∵CE⊥x轴,CF⊥y轴,
    ∴∠ECF=90°.
    ∵△ABC为等腰直角三角形,
    ∴∠ACF+∠FCB=∠FCB+∠BCE=90°,AC=BC,
    ∴∠ACF=∠BCE.
    在△ACF和△BCE中,

    ∴△ACF≌△BCE(AAS),
    ∴S△ACF=S△BCE,
    ∴S矩形OECF=S四边形OBCA=S△AOB+S△ABC.
    ∵将直线y=−3x向上平移3个单位可得出直线AB,
    ∴直线AB的表达式为y=−3x+3,
    ∴点A(0,3),点B(1,0),
    ∴,
    ∵△ABC为等腰直角三角形,
    ∴,
    ∴S矩形OECF=S△AOB+S△ABC=×1×3+=4.
    ∵反比例函数(x>0)的图象经过点C,
    ∴k=4,
    故选C.
    【点睛】本题考查了反比例函数系数k的几何意义、全等三角形的判定与性质、一次函数图象上点的坐标特征、一次函数图象与几何变换、等腰直角三角形以及三角形的面积,根据等腰直角三角形的性质结合角的计算,证出△ACF≌△BCE(AAS)是解题的关键.
    【变式3】(2022·江苏泰州·校考一模)定义一个新的运算:则运算的最小值为_________.
    【答案】-2
    【分析】分x≤2和x>2两种情况分别求得关于x的函数关系式,然后再求得最小值即可.
    【详解】解:当x≤2时,x⊕2=-2x+2,
    k=-2<0,函数值随x的增大而减小,
    此时当x=2时有最小值-2;
    当x>2时,x⊕2=,
    综上,最小值为-2.
    故答案为-2.
    【点睛】本题主要考查了反比例函数的性质、一次函数的性质等知识点,灵活应用所学知识成为解答本题的关键.
    【变式4】(2022·江苏苏州·统考一模)如图,在平面直角坐标系中,直线y=x+6与x轴,y轴分别交于点D,点E,点F为直线y=x+6上一点,横坐标为-4.把直线DE绕F点顺时针旋转,与x轴负半轴,y轴正半轴分别交于点A,点C,若S△ADF=S△FEC,则直线AC的解析式为______.
    【答案】y=x+3
    【分析】由S△ADF=S△FEC,推出S△ADF+ S四边形CODF =S△FEC+ S四边形CODF,即S△AOC=S△EOD,设直线AC的解析式为y=kx+b,根据题意得出b2-9b+18=0,继续计算即可求解.
    【详解】解:令x=0,则y=6,令y=0,则x=-6,
    ∴点D(-6,0),点E(0,6),
    ∴OD=OE=6,
    ∵点F为直线y=x+6上一点,横坐标为-4,
    ∴y=-4+6=2,
    ∴点F(-4,2),
    ∵S△ADF=S△FEC,
    ∴S△ADF+ S四边形CODF =S△FEC+ S四边形CODF,
    ∴S△AOC=S△EOD,
    设直线AC的解析式为y=kx+b,
    则点A(-,0),点E(0,b),
    ∴OA=,OC=b,
    根据题意得:,,
    整理得:b2-9b+18=0,
    解得:b=6(舍去)或b=3,
    当b=3时,k=,
    ∴直线AC的解析式为y=x+3,
    故答案为:y=x+3.
    【点睛】本题考查了一次函数图象上点的坐标特征、三角形的面积,解题的关键是利用三角形的面积公式结合S△ADF=S△FEC,找出关于b的一元二次方程.
    【变式5】(2022·河北保定·校考一模)如图,在平面直角坐标系中,点A(﹣5,m),B(m﹣3,m),其中m>0,直线y=kx﹣1与y轴相交于C点.
    (1)求点C坐标 .
    (2)若m=2,
    ①求△ABC的面积;
    ②若点A和点B在直线y=kx﹣1的两侧,求k的取值范围;
    (3)当k=﹣1时,直线y=kx﹣1与线段AB的交点为P点(不与A点、B点重合),且AP<2,求m的取值范围.
    【答案】(1)(0,-1)
    (2)①6;②
    (3)2

    相关试卷

    最新中考数学总复习真题探究与变式训练(讲义) 专题06 平面直角坐标系(4大考点):

    这是一份最新中考数学总复习真题探究与变式训练(讲义) 专题06 平面直角坐标系(4大考点),文件包含专题06平面直角坐标系4大考点原卷版docx、专题06平面直角坐标系4大考点解析版docx等2份试卷配套教学资源,其中试卷共101页, 欢迎下载使用。

    最新中考数学总复习真题探究与变式训练(讲义) 专题05 不等式(组)及不等式的应用(5大考点):

    这是一份最新中考数学总复习真题探究与变式训练(讲义) 专题05 不等式(组)及不等式的应用(5大考点),文件包含专题05不等式组及不等式的应用5大考点原卷版docx、专题05不等式组及不等式的应用5大考点解析版docx等2份试卷配套教学资源,其中试卷共72页, 欢迎下载使用。

    最新中考数学总复习真题探究与变式训练(讲义) 专题04 方程(组)及其应用(8大考点):

    这是一份最新中考数学总复习真题探究与变式训练(讲义) 专题04 方程(组)及其应用(8大考点),文件包含专题04方程组及其应用8大考点原卷版docx、专题04方程组及其应用8大考点解析版docx等2份试卷配套教学资源,其中试卷共107页, 欢迎下载使用。

    • 精品推荐
    • 所属专辑
    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map