资料中包含下列文件,点击文件名可预览资料内容
还剩3页未读,
继续阅读
第三章 圆锥曲线的方程 章节验收测评卷(综合卷)-2024-2025学年高二数学上学期同步精讲精练(人教A版选择性必修第一册)
展开
这是一份第三章 圆锥曲线的方程 章节验收测评卷(综合卷)-2024-2025学年高二数学上学期同步精讲精练(人教A版选择性必修第一册),文件包含第三章圆锥曲线的方程章节验收测评卷综合卷原卷版docx、第三章圆锥曲线的方程章节验收测评卷综合卷解析版docx等2份试卷配套教学资源,其中试卷共23页, 欢迎下载使用。
第三章 圆锥曲线的方程 章节验收测评卷(综合卷) 一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2022·浙江·三模)双曲线的实轴长度是( ) A.1 B.2 C. D.42.(2022·安徽·高二期末)已知抛物线上一点到轴的距离是2,则点到焦点的距离为( )A. B.2 C. D.33.(2022·山东·济南市历城第二中学模拟预测)由伦敦著名建筑事务所Steyn Studio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线(,)下支的一部分,且此双曲线的一条渐近线为,下焦点到下顶点的距离为1,则该双曲线的方程为( )A. B. C. D.4.(2022·全国·模拟预测(文))设,是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于( )A.24 B. C. D.305.(2022·贵州黔东南·高二期末(理))已知双曲线C:的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为( )A. B. C.2 D.6.(2022·山东青岛·二模)设O为坐标原点,抛物线与双曲线有共同的焦点F,过F与x轴垂直的直线交于A,B两点,与在第一象限内的交点为M,若,,则双曲线的离心率为( )A. B. C. D.7.(2022·江苏·南京市第一中学高三开学考试)已知以F为焦点的抛物线上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是( )A.2 B. C. D.48.(2022·安徽·合肥一中高二期末)如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点,圆,过圆心的直线l与抛物线和圆分别交于点P,Q,M,N,则的最小值为( )A.23 B.26 C.36 D.62二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.(2022·广东·佛山市南海区艺术高级中学模拟预测)若方程所表示的曲线为,则下面四个命题中正确的是( )A.若为椭圆,则 B.若为双曲线,则或C.曲线可能是圆 D.若为椭圆,且长轴在轴上,则10.(2022·全国·模拟预测)椭圆的左、右焦点分别为,,点P在椭圆C上,若方程所表示的直线恒过定点M,点Q在以点M为圆心,C的长轴长为直径的圆上,则下列说法正确的是( )A.椭圆C的离心率为 B.的最大值为4C.的面积可能为2 D.的最小值为11.(2022·山东·德州市教育科学研究院三模)已知线段BC的长度为4,线段AB的长度为,点D,G满足,,且点在直线AB上,若以BC所在直线为轴,BC的中垂线为轴建立平面直角坐标系,则( )A.当时,点的轨迹为圆B.当时,点的轨迹为椭圆,且椭圆的离心率取值范围为C.当时,点的轨迹为双曲线,且该双曲线的渐近线方程为D.当时,面积的最大值为312.(2022·山东·济南市历城第二中学模拟预测)设,F为椭圆的左、右焦点,P为椭圆上的动点,且椭圆上至少有17个不同的点,,,,…组成公差为d的递增等差数列,则( )A.的最大值为B.的面积最大时,C.d的取值范围为D.椭圆上存在点P,使三、填空题:(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.(2022·贵州遵义·高二期末(理))过点且与双曲线:的渐近线垂直的直线方程为__________.14.(2022·河南商丘·三模(文))写出一个同时满足以下条件的抛物线的方程为___________.①的顶点在坐标原点;②的对称轴为坐标轴;③的焦点到其准线的距离为15.(2022·全国·高二专题练习)已知,分别是双曲线:的左,右焦点,动点在双曲线的左支上,点为圆:上一动点,则的最小值为______.16.(2022·福建·三明一中模拟预测)已知双曲线的左、右焦点分别为、,过作的一条渐近线的垂线,垂足为,连接,若直线与另一条渐近线交于点,且,则___________;的周长为___________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(2022·甘肃武威·模拟预测(文))已知椭圆的两焦点为、,P为椭圆上一点,且.(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积.18.(2022·江苏·苏州市第六中学校三模)已知双曲线:过点,渐近线方程为,直线是双曲线右支的一条切线,且与的渐近线交于A,B两点.(1)求双曲线的方程;(2)设点A,B的中点为M,求点M到y轴的距离的最小值.19.(2022·河南·二模(文))已知抛物线的准线为,过抛物线上一点向轴作垂线,垂足恰好为抛物线的焦点,且.(Ⅰ)求抛物线的方程;(Ⅱ)设与轴的交点为,过轴上的一个定点的直线与抛物线交于两点.记直线的斜率分别为,若,求直线的方程.20.(2022·四川广安·模拟预测(理))已知P为椭圆()上一点,,分别是椭圆的左、右焦点,,且椭圆离心率为.(1)求椭圆的标准方程;(2)过的直线l交椭圆于A,B两点,点C与点B关于x轴对称,求面积的最大值21.(2022·山东青岛·二模)已知点在椭圆上,椭圆C的左右焦点分别为,,的面积为.(1)求椭圆C的方程;(2)设点A,B在椭圆C上,直线PA,PB均与圆相切,记直线PA,PB的斜率分别为,.(i)证明:;(ii)证明:直线AB过定点.22.(2022·上海奉贤·二模)椭圆上有两点和,.点A关于椭圆中心的对称点为点,点在椭圆内部,是椭圆的左焦点,是椭圆的右焦点.(1)若点在直线上,求点坐标;(2)是否存在一个点,满足,若满足求出点坐标,若不存在请说明理由;(3)设的面积为,的面积为,求的取值范围.
第三章 圆锥曲线的方程 章节验收测评卷(综合卷) 一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.(2022·浙江·三模)双曲线的实轴长度是( ) A.1 B.2 C. D.42.(2022·安徽·高二期末)已知抛物线上一点到轴的距离是2,则点到焦点的距离为( )A. B.2 C. D.33.(2022·山东·济南市历城第二中学模拟预测)由伦敦著名建筑事务所Steyn Studio设计的南非双曲线大教堂惊艳世界,该建筑是数学与建筑完美结合造就的艺术品.若将如图所示的大教堂外形弧线的一段近似看成双曲线(,)下支的一部分,且此双曲线的一条渐近线为,下焦点到下顶点的距离为1,则该双曲线的方程为( )A. B. C. D.4.(2022·全国·模拟预测(文))设,是双曲线的两个焦点,是双曲线上的一点,且,则的面积等于( )A.24 B. C. D.305.(2022·贵州黔东南·高二期末(理))已知双曲线C:的左,右焦点分别为、,过的直线l交双曲线的右支于点P,以双曲线的实轴为直径的圆与直线l相切,切点为H,若,则双曲线C的离心率为( )A. B. C.2 D.6.(2022·山东青岛·二模)设O为坐标原点,抛物线与双曲线有共同的焦点F,过F与x轴垂直的直线交于A,B两点,与在第一象限内的交点为M,若,,则双曲线的离心率为( )A. B. C. D.7.(2022·江苏·南京市第一中学高三开学考试)已知以F为焦点的抛物线上的两点A,B,满足,则弦AB的中点到C的准线的距离的最大值是( )A.2 B. C. D.48.(2022·安徽·合肥一中高二期末)如图,已知抛物线的顶点在坐标原点,焦点在x轴上,且过点,圆,过圆心的直线l与抛物线和圆分别交于点P,Q,M,N,则的最小值为( )A.23 B.26 C.36 D.62二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.(2022·广东·佛山市南海区艺术高级中学模拟预测)若方程所表示的曲线为,则下面四个命题中正确的是( )A.若为椭圆,则 B.若为双曲线,则或C.曲线可能是圆 D.若为椭圆,且长轴在轴上,则10.(2022·全国·模拟预测)椭圆的左、右焦点分别为,,点P在椭圆C上,若方程所表示的直线恒过定点M,点Q在以点M为圆心,C的长轴长为直径的圆上,则下列说法正确的是( )A.椭圆C的离心率为 B.的最大值为4C.的面积可能为2 D.的最小值为11.(2022·山东·德州市教育科学研究院三模)已知线段BC的长度为4,线段AB的长度为,点D,G满足,,且点在直线AB上,若以BC所在直线为轴,BC的中垂线为轴建立平面直角坐标系,则( )A.当时,点的轨迹为圆B.当时,点的轨迹为椭圆,且椭圆的离心率取值范围为C.当时,点的轨迹为双曲线,且该双曲线的渐近线方程为D.当时,面积的最大值为312.(2022·山东·济南市历城第二中学模拟预测)设,F为椭圆的左、右焦点,P为椭圆上的动点,且椭圆上至少有17个不同的点,,,,…组成公差为d的递增等差数列,则( )A.的最大值为B.的面积最大时,C.d的取值范围为D.椭圆上存在点P,使三、填空题:(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分.)13.(2022·贵州遵义·高二期末(理))过点且与双曲线:的渐近线垂直的直线方程为__________.14.(2022·河南商丘·三模(文))写出一个同时满足以下条件的抛物线的方程为___________.①的顶点在坐标原点;②的对称轴为坐标轴;③的焦点到其准线的距离为15.(2022·全国·高二专题练习)已知,分别是双曲线:的左,右焦点,动点在双曲线的左支上,点为圆:上一动点,则的最小值为______.16.(2022·福建·三明一中模拟预测)已知双曲线的左、右焦点分别为、,过作的一条渐近线的垂线,垂足为,连接,若直线与另一条渐近线交于点,且,则___________;的周长为___________.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.(2022·甘肃武威·模拟预测(文))已知椭圆的两焦点为、,P为椭圆上一点,且.(1)求此椭圆的方程;(2)若点P在第二象限,,求的面积.18.(2022·江苏·苏州市第六中学校三模)已知双曲线:过点,渐近线方程为,直线是双曲线右支的一条切线,且与的渐近线交于A,B两点.(1)求双曲线的方程;(2)设点A,B的中点为M,求点M到y轴的距离的最小值.19.(2022·河南·二模(文))已知抛物线的准线为,过抛物线上一点向轴作垂线,垂足恰好为抛物线的焦点,且.(Ⅰ)求抛物线的方程;(Ⅱ)设与轴的交点为,过轴上的一个定点的直线与抛物线交于两点.记直线的斜率分别为,若,求直线的方程.20.(2022·四川广安·模拟预测(理))已知P为椭圆()上一点,,分别是椭圆的左、右焦点,,且椭圆离心率为.(1)求椭圆的标准方程;(2)过的直线l交椭圆于A,B两点,点C与点B关于x轴对称,求面积的最大值21.(2022·山东青岛·二模)已知点在椭圆上,椭圆C的左右焦点分别为,,的面积为.(1)求椭圆C的方程;(2)设点A,B在椭圆C上,直线PA,PB均与圆相切,记直线PA,PB的斜率分别为,.(i)证明:;(ii)证明:直线AB过定点.22.(2022·上海奉贤·二模)椭圆上有两点和,.点A关于椭圆中心的对称点为点,点在椭圆内部,是椭圆的左焦点,是椭圆的右焦点.(1)若点在直线上,求点坐标;(2)是否存在一个点,满足,若满足求出点坐标,若不存在请说明理由;(3)设的面积为,的面积为,求的取值范围.
相关资料
更多