初中数学北师大版九年级上册2 矩形的性质与判定集体备课课件ppt
展开1.理解矩形的概念,知道矩形与平行四边形的区别与 联系.(重点)2.会证明矩形的性质,会用矩形的性质解决简单的问 题.(重点、难点)3.掌握直角三角形斜边中线的性质,并会简单的运用. (重点)
观察下面图形,长方形在生活中无处不在.
思考 长方形跟我们前面学习的平行四边形有什么关系?
你还能举出其他的例子吗?
活动1:利用一个活动的平行四边形教具演示,使平行四边形的一个内角变化,请同学们注意观察.
定义:有一个角是直角的平行四边形叫做矩形. 也叫做长方形.
平行四边形不一定是矩形.
思考 因为矩形是平行四边形,所以它具有平行四边形的所有性质,由于它有一个角为直角,它是否具有一般平行四边形不具有的一些特殊性质呢?
可以从边,角,对角线等方面来考虑.
准备素材:直尺、量角器、橡皮擦、课本、铅笔盒等.(1)请同学们以小组为单位,测量身边的矩形(如书本,课桌,铅笔盒等)的四条边长度、四个角度数和对角线的长度及夹角度数,并记录测量结果.
(2)根据测量的结果,你有什么猜想?
猜想1 矩形的四个角都是直角.
猜想2 矩形的对角线相等.
证明:∵四边形ABCD是矩形, ∴∠B=∠D,∠C=∠A, AB∥DC. ∴∠B+∠C=180°. 又∵∠B = 90°, ∴∠C = 90°. ∴∠B=∠C=∠D=∠A =90°.
如图,四边形ABCD是矩形,∠B=90°.求证: ∠B=∠C=∠D=∠A=90°.
证明:∵四边形ABCD是矩形,∴AB=DC,∠ABC=∠DCB=90°,在△ABC和△DCB中,∵AB=DC,∠ABC=∠DCB,BC= CB,∴△ABC≌△DCB.∴AC=DB.
如图,四边形ABCD是矩形,∠ABC=90°,对角线AC与DB相较于点O.求证:AC=DB.
矩形除了具有平行四边形所有性质,还具有的性质有:矩形的四个角都是直角.矩形的对角线相等.
几何语言描述:在矩形ABCD中,对角线AC与DB相交于点O.∠ABC=∠BCD=∠CDA=∠DAB =90°,AC=DB.
例1 如图,在矩形ABCD中,两条对角线AC,BD相交于点O,∠AOB=60°,AB=4 ,求矩形对角线的长.
解:∵四边形ABCD是矩形. ∴AC = BD, OA= OC= AC,OB = OD = BD ,∴OA = OB. 又∵∠AOB=60°, ∴△OAB是等边三角形, ∴OA=AB=4, ∴AC=BD=2OA=8.
矩形的对角线相等且互相平分
例2如图,在矩形ABCD中,E是BC上一点,AE=AD,DF⊥AE ,垂足为F.求证:DF=DC.
证明:连接DE.∵AD =AE,∴∠AED =∠ADE.∵四边形ABCD是矩形,∴AD∥BC,∠C=90°.∴∠ADE=∠DEC, ∴∠DEC=∠AED.又∵DF⊥AE, ∴∠DFE=∠C=90°.
又∵DE= DE,∴△DFE≌△DCE,∴DF=DC.
例3 如图,将矩形ABCD沿着直线BD折叠,使点C落在C′处,BC′交AD于点E,AD=8,AB=4,求△BED的面积.
解:∵四边形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折叠知∠1=∠2,∴∠1=∠3,∴BE=DE.设BE=DE=x,则AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2,解得x=5,即DE=5.∴S△BED= DE·AB= ×5×4=10.
矩形的折叠问题常与勾股定理结合考查
请同学们拿出准备好的矩形纸片,折一折,观察并思考. (1)矩形是不是中心对称图形? 如果是,那么对称中心是什么?(2)矩形是不是轴对称图形?如果是,那么对称轴有几条?
矩形的性质(除中心对称外)对称性: .对称轴:.
1.如图,在矩形ABCD中,对角线AC,BD交于点O, 下列说法错误的是 ( )A.AB∥DC B.AC=BD C.AC⊥BD D.OA=OB
2.如图,EF过矩形ABCD对角线的交点O,且分别交AB、CD于E、F,那么阴影部分的面积是矩形ABCD面积的_________.
3.如图,在矩形ABCD中,AE⊥BD于E,∠DAE:∠BAE=3:1,求∠BAE和∠EAO的度数.
解:∵四边形ABCD是矩形,∴∠DAB=90°,AO= AC,BO= BD,AC=BD,∴∠BAE+∠DAE=90°,AO=BO.又∵∠DAE:∠BAE=3:1,∴∠BAE=22.5°,∠DAE=67.5°.∵AE⊥BD,∴∠ABE=90°-∠BAE=90°-22.5°=67.5°,∴∠OAB=∠ABE=67.5°∴∠EAO=67.5°-22.5°=45°.
活动:如图,一张矩形纸片,画出两条对角线,沿着对角线AC剪去一半.
问题 Rt△ABC中,BO是一条怎样的线段?它的长度与斜边AC有什么关系?
猜想:直角三角形斜边上的中线等于斜边的一半.
证明: 延长BO至D, 使OD=BO, 连接AD、DC.
∵AO=OC, BO=OD,∴四边形ABCD是平行四边形.
∵∠ABC=90°,
∴平行四边形ABCD是矩形,
1. 直角三角形斜边上的中线等于斜边的一半.
例4 如图,在△ABC中,AD是高,E、F分别是AB、AC的中点.(1)若AB=10,AC=8,求四边形AEDF的周长;
解:∵AD是△ABC的高,E、F分别是AB、AC的中点,∴DE=AE= AB= ×10=5, DF=AF= AC= ×8=4,∴四边形AEDF的周长=AE+DE+DF+AF=5+5+4+4=18;
(2)求证:EF垂直平分AD.
证明:∵DE=AE,DF=AF,∴E、F在线段AD的垂直平分线上, ∴EF垂直平分AD.
当已知条件含有线段的中点、直角三角形的条件时,可联想直角三角形斜边上的中线的性质进行求解.
例5 如图,已知BD,CE是△ABC不同边上的高,点G,F分别是BC,DE的中点,试说明GF⊥DE.
解:连接EG,DG. ∵BD,CE是△ABC的高, ∴∠BDC=∠BEC=90°. ∵点G是BC的中点,∴EG= BC,DG= BC. ∴EG=DG. 又∵点F是DE的中点.∴GF⊥DE.
在直角三角形中,遇到斜边中点常作斜边中线,进而可将问题转化为等腰三角形的问题,然后利用等腰三角形“三线合一”的性质解题.
直角三角形斜边上的中线上的性质常见类型
如图,在△ABC中,∠ABC = 90°,BD是斜边AC上的中线.(1)若BD=3cm,则AC =_____cm;(2)若∠C = 30° ,AB = 5cm,则AC =_____cm, BD = _____cm.
1.矩形具有而一般平行四边形不具有的性质是 ( ) A.对角线相等 B.对边相等 C.对角相等 D.对角线互相平分 2.若直角三角形的两条直角边分别5和12,则斜边上的中线长为 ( ) A.13 B.6 C.6.5 D.不能确定 3.若矩形的一条对角线与一边的夹角为40°,则两条对角线相交的锐角是 ( ) A.20 ° B.40° C.80 ° D.10°
4.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则EF=____cm.
5.如图,△ABC中,E在AC上,且BE⊥AC.D为AB中点,若DE=5,AE=8,则BE的长为______.
6.如图,四边形ABCD是矩形,对角线AC,BD相交于点O,BE∥AC交DC的延长线于点E.(1)求证:BD=BE,(2)若∠DBC=30° , BO=4 ,求四边形ABED的面积.
(1)证明:∵四边形ABCD是矩形,∴AC= BD,AB∥CD.又∵BE∥AC,∴四边形ABEC是平行四边形,∴AC=BE,∴BD=BE.
(2)解:∵在矩形ABCD中,BO=4,∴BD = 2BO =2×4=8.∵∠DBC=30°,∴CD= BD= ×8=4,∴AB=CD=4,DE=CD+CE=CD+AB=8.在Rt△BCD中,BC=∴四边形ABED的面积= ×(4+8)× = .
7.如图,在矩形ABCD中,AB=6,AD=8,P是AD上的动点,PE⊥AC,PF⊥BD于F,求PE+PF的值.
解:连接OP.∵四边形ABCD是矩形,∴∠DAB=90°,OA=OD=OC=OB,∴S△AOD=S△DOC=S△AOB=S△BOC = S矩形ABCD= ×6×8=12.在Rt△BAD中,由勾股定理得BD=10,∴AO=OD=5,∵S△APO+S△DPO=S△AOD,∴ AO·PE+ DO·PF=12,即5PE+5PF=24,∴PE+PF= .
北师大版九年级上册2 矩形的性质与判定精品课件ppt: 这是一份北师大版九年级上册2 矩形的性质与判定精品课件ppt,文件包含12矩形的性质与判定第1课时教学课件pptx、第一章特殊平行四边形12矩形的性质与判定第1课时教案内含练习docx等2份课件配套教学资源,其中PPT共33页, 欢迎下载使用。
北师大版九年级上册2 矩形的性质与判定完美版ppt课件: 这是一份北师大版九年级上册2 矩形的性质与判定完美版ppt课件,文件包含12矩形的性质与判定第3课时教学课件pptx、第一章特殊平行四边形12矩形的性质与判定第3课时教案内含练习docx等2份课件配套教学资源,其中PPT共30页, 欢迎下载使用。
初中数学北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定精品ppt课件: 这是一份初中数学北师大版九年级上册第一章 特殊平行四边形2 矩形的性质与判定精品ppt课件,文件包含12矩形的性质与判定第1课时教学课件pptx、第一章特殊平行四边形12矩形的性质与判定第1课时教案内含练习docx等2份课件配套教学资源,其中PPT共33页, 欢迎下载使用。