所属成套资源:2024年高考数学二轮复习【举一反三】系列(新高考专用)
- 2024年高考数学二轮复习【举一反三】系列 专题2.4 函数的图象与函数的零点问题【八大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题3.1 导数的概念及其几何意义与运算【八大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题4.1 同角三角函数关系式、诱导公式与三角恒等变换【八大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题4.2 三角函数的图象与性质【八大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题4.3 正弦定理和余弦定理【八大题型】(新高考专用) 试卷 0 次下载
2024年高考数学二轮复习【举一反三】系列 专题3.2 函数的单调性、极值与最值【七大题型】- (新高考专用)
展开
这是一份2024年高考数学二轮复习【举一反三】系列 专题3.2 函数的单调性、极值与最值【七大题型】- (新高考专用),文件包含专题32函数的单调性极值与最值七大题型举一反三新高考专用原卷版docx、专题32函数的单调性极值与最值七大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共39页, 欢迎下载使用。
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
专题3.2 函数的单调性、极值与最值【七大题型】
【新高考专用】
TOC \ "1-3" \h \u
\l "_Tc16041" 【题型1 利用导数判断单调性、求单调区间】 PAGEREF _Tc16041 \h 2
\l "_Tc32682" 【题型2 由函数的单调性求参数】 PAGEREF _Tc32682 \h 3
\l "_Tc26575" 【题型3 利用导数求函数的极值(点)】 PAGEREF _Tc26575 \h 3
\l "_Tc27987" 【题型4 根据极值(点)求参数】 PAGEREF _Tc27987 \h 4
\l "_Tc9371" 【题型5 利用导数求函数的最值】 PAGEREF _Tc9371 \h 4
\l "_Tc25150" 【题型6 已知函数最值求参数】 PAGEREF _Tc25150 \h 5
\l "_Tc3606" 【题型7 函数单调性、极值与最值的综合应用】 PAGEREF _Tc3606 \h 5
1、函数的单调性、极值与最值
导数与函数是高中数学的核心内容,是高考常考的热点内容,从近三年的高考情况来看,高考中常涉及的问题有利用导数解决函数的单调性、极值和最值等;与不等式、方程的根(或函数的零点)等内容结合考查,此类问题体现了分类讨论、转化与化归等数学思想,此类问题在选择、填空、解答题中都有考查,而在解答题中进行考查时试题难度较大.
【知识点1 导数中函数单调性问题的解题策略】
1.确定函数单调区间的步骤;
(1)确定函数f(x)的定义域;
(2)求f'(x);
(3)解不等式f'(x)>0,解集在定义域内的部分为单调递增区间;
(4)解不等式f'(x)
相关试卷
这是一份2024年高考数学二轮复习【举一反三】系列 专题1.1 集合与常用逻辑用语【七大题型】- (新高考专用),文件包含专题11集合与常用逻辑用语七大题型举一反三新高考专用原卷版docx、专题11集合与常用逻辑用语七大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共25页, 欢迎下载使用。
这是一份高考数学一轮复习 专题3.2 函数的单调性与最值(讲),文件包含专题32函数的单调性与最值讲教师版docx、专题32函数的单调性与最值讲学生版docx等2份试卷配套教学资源,其中试卷共32页, 欢迎下载使用。
这是一份2023届高考数学二轮复习专题四导数与函数的单调性、极值、最值作业含答案,共10页。试卷主要包含了单项选择题,多项选择题,填空题,解答题等内容,欢迎下载使用。