所属成套资源:2024年高考数学二轮复习【举一反三】系列(新高考专用)
- 2024年高考数学二轮复习【举一反三】系列 专题1.1 集合与常用逻辑用语【七大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题1.2 不等式及其应用【八大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题2.2 函数的单调性、奇偶性、对称性与周期性【九大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题2.3 幂函数与指、对数函数【九大题型】- (新高考专用) 试卷 0 次下载
- 2024年高考数学二轮复习【举一反三】系列 专题2.4 函数的图象与函数的零点问题【八大题型】- (新高考专用) 试卷 0 次下载
2024年高考数学二轮复习【举一反三】系列 专题2.1 函数的解析式与定义域、值域【八大题型】- (新高考专用)
展开
这是一份2024年高考数学二轮复习【举一反三】系列 专题2.1 函数的解析式与定义域、值域【八大题型】- (新高考专用),文件包含专题21函数的解析式与定义域值域八大题型举一反三新高考专用原卷版docx、专题21函数的解析式与定义域值域八大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共26页, 欢迎下载使用。
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
专题2.1 函数的解析式与定义域、值域【七大题型】
【新高考专用】
TOC \ "1-3" \h \u
\l "_Tc20080" 【题型1 具体函数的定义域的求解】 PAGEREF _Tc20080 \h 2
\l "_Tc20764" 【题型2 抽象函数的定义域的求解】 PAGEREF _Tc20764 \h 3
\l "_Tc15115" 【题型3 已知函数定义域求参数】 PAGEREF _Tc15115 \h 4
\l "_Tc32535" 【题型4 已知函数类型求解析式】 PAGEREF _Tc32535 \h 6
\l "_Tc26200" 【题型5 已知f(g(x))求解析式】 PAGEREF _Tc26200 \h 8
\l "_Tc11162" 【题型6 函数值域的求解】 PAGEREF _Tc11162 \h 10
\l "_Tc27442" 【题型7 根据函数的值域或最值求参数】 PAGEREF _Tc27442 \h 12
1、函数的解析式与定义域、值域
函数的解析式与定义域、值域问题是高考数学的必考内容。函数问题定义域优先,在解答函数问题时首先要考虑定义域;函数的解析式在高考中较少单独考查,多在解答题中出现;函数的值域在整个高考范畴应用的非常广泛,例如恒成立问题、有解问题、数形结合问题、实际应用问题;基本不等式问题;数列的最大项、最小项;向量与复数的四则运算及模的最值;解析几何的函数性研究问题等;常常需要转化为求最值问题。在二轮复习过程中,在熟练掌握基本的解题方法的同时,也要多训练综合性较强的题目.
【知识点1 函数的定义域的求法】
1.求给定解析式的函数定义域的方法
求给定解析式的函数的定义域,其实质就是以函数解析式中所含式子(运算)有意义为准则,列出不等式或不等式组求解;对于实际问题,定义域应使实际问题有意义.
2.求抽象函数定义域的方法
(1)若已知函数f(x)的定义域为[a,b],则复合函数f[g(x)]的定义域可由不等式a≤g(x)≤b求出.
(2)若已知函数f[g(x)]的定义域为[a,b],则f(x)的定义域为g(x)在x∈[a,b]上的值域.
【知识点2 函数解析式的四种求法】
1.函数解析式的四种求法
(1)配凑法:由已知条件f(g(x))=F(x),可将F(x)改写成关于g(x)的表达式,然后以x替代g(x),便得f(x)的表达式.
(2)待定系数法:若已知函数的类型(如一次函数、二次函数)可用待定系数法来求解.
(3)换元法:已知复合函数f(g(x))的解析式,可用换元法,此时要注意新元的取值范围.
(4)方程思想:已知关于f(x)与或f(-x)等的表达式,可根据已知条件再构造出另外一个等式组成方程组,通过解方程组求出f(x).
【知识点3 求函数值域的一般方法】
1.求函数值域的一般方法
(1)分离常数法;
(2)反解法;
(3)配方法;
(4)不等式法;
(5)单调性法;
(6)换元法;
(7)数形结合法;
(8)导数法.
【题型1 具体函数的定义域的求解】
【例1】(2023上·江苏南京·高一校考阶段练习)函数fx=3−xx−1的定义域为( )
A.−∞,3B.1,+∞C.1,3D.−∞,1∪3,+∞
【解题思路】由函数形式得到不等式组,解出即可.
【解答过程】由题意得3−xx−1≥0x−1≠0,解得1
相关试卷
这是一份2024年高考数学二轮复习【举一反三】系列 重难点03 函数性质的灵活运用【八大题型】- (新高考专用),文件包含重难点03函数性质的灵活运用八大题型举一反三新高考专用原卷版docx、重难点03函数性质的灵活运用八大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
这是一份2024年高考数学二轮复习【举一反三】系列 专题4.2 三角函数的图象与性质【八大题型】- (新高考专用),文件包含专题42三角函数的图象与性质八大题型举一反三新高考专用原卷版docx、专题42三角函数的图象与性质八大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共43页, 欢迎下载使用。
这是一份2024年高考数学二轮复习【举一反三】系列 专题4.1 同角三角函数关系式、诱导公式与三角恒等变换【八大题型】- (新高考专用),文件包含专题41同角三角函数关系式诱导公式与三角恒等变换八大题型举一反三新高考专用原卷版docx、专题41同角三角函数关系式诱导公式与三角恒等变换八大题型举一反三新高考专用解析版docx等2份试卷配套教学资源,其中试卷共29页, 欢迎下载使用。