福建省建瓯市芝华中学2023-2024学年数学九年级第一学期期末质量检测试题含答案
展开
这是一份福建省建瓯市芝华中学2023-2024学年数学九年级第一学期期末质量检测试题含答案,共8页。
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.已知如图,中,,,,边的垂直平分线交于点,交于点,则的长是( ).
A.B.C.4D.6
2.二次函数图象上部分点的坐标对应值列表如下:
则该函数图象的对称轴是( )
A.直线x=﹣3B.直线x=﹣2C.直线x=﹣1D.直线x=0
3.如图,重庆欢乐谷的摩天轮是西南地区最高的摩天轮,号称“重庆之限”.摩天轮是一个圆形,直径AB垂直水平地面于点C,最低点B离地面的距离BC为1.6米.某天,妈妈带着洋洋来坐摩天轮,当她站在点D仰着头看见摩天轮的圆心时,仰角为37º,为了选择更佳角度为洋洋拍照,妈妈后退了49米到达点D’,当洋洋坐的桥厢F与圆心O在同一水平线时,他俯头看见妈妈的眼睛,此时俯角为42º,已知妈妈的眼睛到地面的距离为1.6米,妈妈两次所处的位置与摩天轮在同一平面上,则该摩天轮最高点A离地面的距离AC约是( )
(参考数据:sin37º≈0.60,tan37º≈0.75,sin42º≈0.67,tan42º≈0.90)
A.118.8米B.127.6米C.134.4米D.140.2米
4.如图,二次函数()的图象交轴于点和点,交轴的负半轴于点,且,下列结论:①;②;③;④.其中正确的个数有( )
A.1B.2C.3D.4
5.如图,△ABC的内切圆⊙O与BC、CA、AB分别相切于点D、E、F,且AB=5,BC=13,CA=12,则阴影部分(即四边形AEOF)的面积是( )
A.4B.6.25C.7.5D.9
6.在平面直角坐标系中,点(2,-1)关于原点对称的点的坐标为( )
A.B.C.D.
7.若二次根式在实数范围内有意义,则x的取值范围是
A.x≤B.x≥C.x≤D.x≥
8.将一元二次方程配方后所得的方程是( )
A.B.
C.D.
9.方程x2﹣2x+3=0的根的情况是( )
A.有两个相等的实数根B.只有一个实数根
C.没有实数根D.有两个不相等的实数根
10.如图,∠1=∠2,要使△ABC∽△ADE,只需要添加一个条件即可,这个条件不可能是( )
A.∠B=∠DB.∠C=∠EC.D.
二、填空题(每小题3分,共24分)
11.从长度分别是,,,的四根木条中,抽出其中三根能组成三角形的概率是______.
12.某化肥厂一月份生产化肥500吨,从二月份起,由于改进操作技术,使得第一季度共生产化肥1750吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x,则可列方程为_______.
13.若两个相似三角形的面积比是9:25,则对应边上的中线的比为 _________.
14.用反证法证明命题“若⊙O的半径为r,点P到圆心的距离为d,且d>r,则点P在⊙O的外部”,首先应假设P在__________.
15.在平面直角坐标系中,已知、两点,以坐标原点为位似中心,相似比为,把线段缩小后得到线段,则的长度等于________.
16.当宽为3cm的刻度尺的一边与圆相切时,另一边与圆的两个交点处的读数如图所示(单位:cm),那么该圆的半径为 ▲ cm.
17.如图,抛物线y=﹣x2+2x+k与x轴交于A,B两点,交y轴于点C,则点B的坐标是_____;点C的坐标是_____.
18.因式分解:_______;
三、解答题(共66分)
19.(10分)如图,已知AD•AC=AB•AE.求证:△ADE∽△ABC.
20.(6分)如图,一艘游轮在A处测得北偏东45°的方向上有一灯塔B.游轮以20海里/时的速度向正东方向航行2小时到达C处,此时测得灯塔B在C处北偏东15°的方向上,求A处与灯塔B相距多少海里?(结果精确到1海里,参考数据:≈1.41,≈1.73)
21.(6分)如图1,在矩形ABCD中,点P是BC边上一点,连接AP交对角线BD于点E,.作线段AP的中垂线MN分别交线段DC,DB,AP,AB于点M,G,F,N.
(1)求证:;
(2)若,求.
(3)如图2,在(2)的条件下,连接CF,求的值.
22.(8分)安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量(千克)与每千克降价(元)之间满足一次函数关系,其图象如图所示:
(1)求与之间的函数关系式;
(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?
23.(8分)在矩形中,,,是射线上的点,连接,将沿直线翻折得.
(1)如图①,点恰好在上,求证:∽;
(2)如图②,点在矩形内,连接,若,求的面积;
(3)若以点、、为顶点的三角形是直角三角形,则的长为 .
24.(8分)如图,在平面直角坐标系中,正六边形ABCDEF的对称中心P在反比例函数的图象上,边CD在x轴上,点B在y轴上.已知.
(1)点A是否在该反比例函数的图象上?请说明理由.
(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标.
(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.
25.(10分)近期江苏省各地均发布“雾霾”黄色预警,我市某口罩厂商生产一种新型口罩产品,每件制造成本为18元,试销过程中发现,每月销售量y(万件)与销售单价x(元)之间的关系满足下表.
(1)请你从所学过的一次函数、二次函数和反比例函数三个模型中确定哪种函数能比较恰当地表示y与x的变化规律,并直接写出y与x之间的函数关系式为__________;
(2)当销售单价为多少元时,厂商每月获得的利润为440万元?
(3)如果厂商每月的制造成本不超过540万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大利润为多少万元?
26.(10分)已知关于的方程;
(1)当为何值时,方程有两个不相等的实数根;
(2)若为满足(1)的最小正整数,求此时方程的两个根,.
参考答案
一、选择题(每小题3分,共30分)
1、B
2、B
3、B
4、D
5、A
6、D
7、A
8、B
9、C
10、D
二、填空题(每小题3分,共24分)
11、
12、500+500(1+x)+500(1+x)2=1
13、3:1
14、⊙O上或⊙O内
15、
16、.
17、 (﹣1,1) (1,3)
18、(a-b)(a-b+1)
三、解答题(共66分)
19、证明见解析.
20、A处与灯塔B相距109海里.
21、(1)见解析;(2);(3)
22、(1);(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.
23、(1)见解析;(2)的面积为;(3)、5、1、
24、(1)点A在该反比例函数的图像上,见解析;(2)Q的横坐标是;(3)见解析.
25、(1)y=﹣2x+100;(2)当销售单价为28元或1元时,厂商每月获得的利润为41万元;(3)当销售单价为35元时,厂商每月获得的利润最大,最大利润为510万元.
26、(1)且;(2),.
x
…
﹣3
﹣2
﹣1
0
1
…
y
…
﹣3
﹣2
﹣3
﹣6
﹣11
…
销售单价x(元/件)
…
20
25
30
40
…
每月销售量y(万件)
…
60
50
40
20
…
相关试卷
这是一份2023-2024学年福建省南平市建瓯市芝华中学九上数学期末学业水平测试模拟试题含答案,共8页。
这是一份福建省建瓯市芝华中学2023-2024学年八年级上学期第三次月考数学试题,共25页。
这是一份福建省南平市建瓯市芝华中学2023-2024学年数学八年级第一学期期末质量检测模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,平方根等于它本身的数是,下列各式中,正确的是等内容,欢迎下载使用。