2022年福建省建瓯市芝华中学中考数学模拟预测题含解析
展开2021-2022中考数学模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1.如图,在平行四边形ABCD中,∠ABC的平分线BF交AD于点F,FE∥AB.若AB=5,AD=7,BF=6,则四边形ABEF的面积为( )
A.48 B.35 C.30 D.24
2.在平面直角坐标系xOy中,将点N(–1,–2)绕点O旋转180°,得到的对应点的坐标是( )
A.(1,2) B.(–1,2)
C.(–1,–2) D.(1,–2)
3.如图,平面直角坐标系中,矩形ABCD的边AB:BC=3:2,点A(3,0),B(0,6)分别在x轴,y轴上,反比例函数y=的图象经过点D,则k值为( )
A.﹣14 B.14 C.7 D.﹣7
4.计算的结果是( )
A.1 B.-1 C. D.
5.如图,在⊙O中,O为圆心,点A,B,C在圆上,若OA=AB,则∠ACB=( )
A.15° B.30° C.45° D.60°
6.如图,AB∥CD,点E在CA的延长线上.若∠BAE=40°,则∠ACD的大小为( )
A.150° B.140° C.130° D.120°
7.⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,则n的值为( )
A.3 B.4 C.6 D.8
8.2017年“智慧天津”建设成效显著,互联网出口带宽达到17200吉比特每秒.将17200用科学记数法表示应为( )
A.172×102 B.17.2×103 C.1.72×104 D.0.172×105
9.下列实数0,,,π,其中,无理数共有( )
A.1个 B.2个 C.3个 D.4个
10.据报道,目前我国“天河二号”超级计算机的运算速度位居全球第一,其运算速度达到了每秒338 600 000亿次,数字338 600 000用科学记数法可简洁表示为( )
A.3.386×108 B.0.3386×109 C.33.86×107 D.3.386×109
11.小桐把一副直角三角尺按如图所示的方式摆放在一起,其中,,,,则等于
A. B. C. D.
12.用加减法解方程组时,若要求消去,则应( )
A. B. C. D.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13.如图,⊙O的半径为2,AB为⊙O的直径,P为AB延长线上一点,过点P作⊙O的切线,切点为C.若PC=2,则BC的长为______.
14.工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C的射线OC即是∠AOB的平分线.做法中用到全等三角形判定的依据是______.
15.当x ________ 时,分式 有意义.
16.如图所示,平行四边形ABCD中,E、F是对角线BD上两点,连接AE、AF、CE、CF,添加 __________条件,可以判定四边形AECF是平行四边形.(填一个符合要求的条件即可)
17.计算:2﹣1+=_____.
18.因式分解:_________________.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19.(6分)已知:如图1,抛物线的顶点为M,平行于x轴的直线与该抛物线交于点A,B(点A在点B左侧),根据对称性△AMB恒为等腰三角形,我们规定:当△AMB为直角三角形时,就称△AMB为该抛物线的“完美三角形”.
(1)①如图2,求出抛物线的“完美三角形”斜边AB的长;
②抛物线与的“完美三角形”的斜边长的数量关系是 ;
(2)若抛物线的“完美三角形”的斜边长为4,求a的值;
(3)若抛物线的“完美三角形”斜边长为n,且的最大值为-1,求m,n的值.
20.(6分)如图,在▱ABCD中,∠BAC=90°,对角线AC,BD相交于点P,以AB为直径的⊙O分别交BC,BD于点E,Q,连接EP并延长交AD于点F.
(1)求证:EF是⊙O的切线;
(2)求证:=4BP•QP.
21.(6分)已知,△ABC中,∠A=68°,以AB为直径的⊙O与AC,BC的交点分别为D,E
(Ⅰ)如图①,求∠CED的大小;
(Ⅱ)如图②,当DE=BE时,求∠C的大小.
22.(8分)已知a2+2a=9,求的值.
23.(8分)已知△ABC内接于⊙O,AD平分∠BAC.
(1)如图1,求证:;
(2)如图2,当BC为直径时,作BE⊥AD于点E,CF⊥AD于点F,求证:DE=AF;
(3)如图3,在(2)的条件下,延长BE交⊙O于点G,连接OE,若EF=2EG,AC=2,求OE的长.
24.(10分)《九章算术》中有一道阐述“盈不足术”的问题,原文如下:
今有人共买物,人出八,盈三;人出七,不足四.问人数,物价各几何?
译文为:
现有一些人共同买一个物品,每人出8元,还盈余3元;每人出7元,则还差4元,问共有多少人?这个物品的价格是多少?
请解答上述问题.
25.(10分)如图所示,直线y=﹣2x+b与反比例函数y=交于点A、B,与x轴交于点C.
(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>的解.
(2)求sin∠OCB的值.
(3)若CB﹣CA=5,求直线AB的解析式.
26.(12分)如图,儿童游乐场有一项射击游戏.从O处发射小球,将球投入正方形篮筐DABC.正方形篮筐三个顶点为A(2,2),B(3,2),D(2,3).小球按照抛物线y=﹣x2+bx+c 飞行.小球落地点P 坐标(n,0)
(1)点C坐标为 ;
(2)求出小球飞行中最高点N的坐标(用含有n的代数式表示);
(3)验证:随着n的变化,抛物线的顶点在函数y=x2的图象上运动;
(4)若小球发射之后能够直接入篮,球没有接触篮筐,请直接写出n的取值范围.
27.(12分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.
(1)在图1中,过点O作AC的平行线;
(2)在图2中,过点E作AC的平行线.
参考答案
一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
1、D
【解析】
分析:首先证明四边形ABEF为菱形,根据勾股定理求出对角线AE的长度,从而得出四边形的面积.
详解:∵AB∥EF,AF∥BE, ∴四边形ABEF为平行四边形, ∵BF平分∠ABC,
∴四边形ABEF为菱形, 连接AE交BF于点O, ∵BF=6,BE=5,∴BO=3,EO=4,
∴AE=8,则四边形ABEF的面积=6×8÷2=24,故选D.
点睛:本题主要考查的是菱形的性质以及判定定理,属于中等难度的题型.解决本题的关键就是根据题意得出四边形为菱形.
2、A
【解析】
根据点N(–1,–2)绕点O旋转180°,所得到的对应点与点N关于原点中心对称求解即可.
【详解】
∵将点N(–1,–2)绕点O旋转180°,
∴得到的对应点与点N关于原点中心对称,
∵点N(–1,–2),
∴得到的对应点的坐标是(1,2).
故选A.
【点睛】
本题考查了旋转的性质,由旋转的性质得到的对应点与点N关于原点中心对称是解答本题的关键.
3、B
【解析】
过点D作DF⊥x轴于点F,则∠AOB=∠DFA=90°,∴∠OAB+∠ABO=90°,
∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC,∴∠OAB+∠DAF=90°,∴∠ABO=∠DAF,
∴△AOB∽△DFA,∴OA:DF=OB:AF=AB:AD,
∵AB:BC=3:2,点A(3,0),B(0,6),∴AB:AD=3:2,OA=3,OB=6,∴DF=2,AF=4,∴OF=OA+AF=7,∴点D的坐标为:(7,2),∴k,故选B.
4、C
【解析】
原式通分并利用同分母分式的减法法则计算,即可得到结果.
【详解】
解:==,
故选:C.
【点睛】
此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.
5、B
【解析】
根据题意得到△AOB是等边三角形,求出∠AOB的度数,根据圆周角定理计算即可.
【详解】
解:∵OA=AB,OA=OB,
∴△AOB是等边三角形,
∴∠AOB=60°,
∴∠ACB=30°,
故选B.
【点睛】
本题考查的是圆周角定理和等边三角形的判定,掌握在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解题的关键.
6、B
【解析】
试题分析:如图,延长DC到F,则
∵AB∥CD,∠BAE=40°,∴∠ECF=∠BAE=40°.
∴∠ACD=180°-∠ECF=140°.
故选B.
考点:1.平行线的性质;2.平角性质.
7、C
【解析】
根据题意可以求出这个正n边形的中心角是60°,即可求出边数.
【详解】
⊙O是一个正n边形的外接圆,若⊙O的半径与这个正n边形的边长相等,
则这个正n边形的中心角是60°,
n的值为6,
故选:C
【点睛】
考查正多边形和圆,求出这个正多边形的中心角度数是解题的关键.
8、C
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将17200用科学记数法表示为1.72×1.
故选C.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
9、B
【解析】
根据无理数的概念可判断出无理数的个数.
【详解】
解:无理数有:,.
故选B.
【点睛】
本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.
10、A
【解析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:数字338 600 000用科学记数法可简洁表示为3.386×108
故选:A
【点睛】
本题考查科学记数法—表示较大的数.
11、C
【解析】
根据三角形的内角和定理和三角形外角性质进行解答即可.
【详解】
如图:
,,
,,
∴
=
=,
故选C.
【点睛】
本题考查了三角形内角和定理、三角形外角的性质、熟练掌握相关定理及性质以及一副三角板中各个角的度数是解题的关键.
12、C
【解析】
利用加减消元法消去y即可.
【详解】
用加减法解方程组时,若要求消去y,则应①×5+②×3,
故选C
【点睛】
此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
二、填空题:(本大题共6个小题,每小题4分,共24分.)
13、2
【解析】
连接OC,根据勾股定理计算OP=4,由直角三角形30度的逆定理可得∠OPC=30°,则∠COP=60°,可得△OCB是等边三角形,从而得结论.
【详解】
连接OC,
∵PC是⊙O的切线,
∴OC⊥PC,
∴∠OCP=90°,
∵PC=2,OC=2,
∴OP===4,
∴∠OPC=30°,
∴∠COP=60°,
∵OC=OB=2,
∴△OCB是等边三角形,
∴BC=OB=2,
故答案为2
【点睛】
本题考查切线的性质、等腰三角形的性质、等边三角形的判定等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.
14、SSS.
【解析】
由三边相等得△COM≌△CON,即由SSS判定三角全等.做题时要根据已知条件结合判定方法逐个验证.
【详解】
由图可知,CM=CN,又OM=ON,
∵在△MCO和△NCO中
,
∴△COM≌△CON(SSS),
∴∠AOC=∠BOC,
即OC是∠AOB的平分线.
故答案为:SSS.
【点睛】
本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.
15、x≠3
【解析】
由题意得
x-3≠0,
∴x≠3.
16、BE=DF
【解析】
可以添加的条件有BE=DF等;证明:
∵四边形ABCD是平行四边形,∴AB=CD,∠ABD=∠CDB;
又∵BE=DF,∴△ABE≌△CDF(SAS).∴AE=CF,∠AEB=∠CFD.
∴∠AEF=∠CFE.∴AE∥CF;
∴四边形AECF是平行四边形.(一组对边平行且相等的四边形是平行四边形)故答案为BE=DF.
17、
【解析】
根据负整指数幂的性质和二次根式的性质,可知=.
故答案为.
18、
【解析】
提公因式法和应用公式法因式分解.
【详解】
解: .
故答案为:
【点睛】
本题考查因式分解,要将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.
三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.
19、(1)AB=2;相等;(2)a=±;(3), .
【解析】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,设出点B的坐标为(n,-n),根据二次函数得出n的值,然后得出AB的值,②因为抛物线y=x2+1与y=x2的形状相同,所以抛物线y=x2+1与y=x2的“完美三角形”的斜边长的数量关系是相等;
(2)根据抛物线的性质相同得出抛物线的完美三角形全等,从而得出点B的坐标,得出a的值;根据最大值得出mn-4m-1=0,根据抛物线的完美三角形的斜边长为n得出点B的坐标,然后代入抛物线求出m和n的值.
(3)根据的最大值为-1,得到化简得mn-4m-1=0,抛物线的“完美三角形”斜边长为n,所以抛物线2的“完美三角形”斜边长为n,得出B点坐标,代入可得mn关系式,即可求出m、n的值.
【详解】
(1)①过点B作BN⊥x轴于N,由题意可知△AMB为等腰直角三角形,AB∥x轴,
易证MN=BN,设B点坐标为(n,-n),代入抛物线,得,
∴,(舍去),∴抛物线的“完美三角形”的斜边
②相等;
(2)∵抛物线与抛物线的形状相同,
∴抛物线与抛物线的“完美三角形”全等,
∵抛物线的“完美三角形”斜边的长为4,∴抛物线的“完美三角形”斜边的长为4,
∴B点坐标为(2,2)或(2,-2),∴.
(3)∵ 的最大值为-1,
∴ ,
∴ ,
∵抛物线的“完美三角形”斜边长为n,
∴抛物线的“完美三角形”斜边长为n,
∴B点坐标为,
∴代入抛物线,得,
∴ (不合题意舍去),
∴,
∴
20、(1)证明见解析;(2)证明见解析.
【解析】
试题分析:(1)连接OE,AE,由AB是⊙O的直径,得到∠AEB=∠AEC=90°,根据四边形ABCD是平行四边形,得到PA=PC推出∠OEP=∠OAC=90°,根据切线的判定定理即可得到结论;
(2)由AB是⊙O的直径,得到∠AQB=90°根据相似三角形的性质得到=PB•PQ,根据全等三角形的性质得到PF=PE,求得PA=PE=EF,等量代换即可得到结论.
试题解析:(1)连接OE,AE,∵AB是⊙O的直径,∴∠AEB=∠AEC=90°,∵四边形ABCD是平行四边形,∴PA=PC,∴PA=PC=PE,∴∠PAE=∠PEA,∵OA=OE,∴∠OAE=∠OEA,∴∠OEP=∠OAC=90°,∴EF是⊙O的切线;
(2)∵AB是⊙O的直径,∴∠AQB=90°,∴△APQ∽△BPA,∴,∴=PB•PQ,在△AFP与△CEP中,∵∠PAF=∠PCE,∠APF=∠CPE,PA=PC,∴△AFP≌△CEP,∴PF=PE,∴PA=PE=EF,∴=4BP•QP.
考点:切线的判定;平行四边形的性质;相似三角形的判定与性质.
21、(Ⅰ)68°(Ⅱ)56°
【解析】
(1)圆内接四边形的一个外角等于它的内对角,利用圆内接四边形的性质证明∠CED=∠A即可,(2)连接AE,在Rt△AEC中,先根据同圆中,相等的弦所对弧相等,再根据同圆中,相等的弧所对圆周角相等, 求出∠EAC,最后根据直径所对圆周是直角,利用直角三角形两锐角互余即可解决问题.
【详解】
(Ⅰ)∵四边形ABED 圆内接四边形,
∴∠A+∠DEB=180°,
∵∠CED+∠DEB=180°,
∴∠CED=∠A,
∵∠A=68°,
∴∠CED=68°.
(Ⅱ)连接AE.
∵DE=BD,
∴,
∴∠DAE=∠EAB=∠CAB=34°,
∵AB是直径,
∴∠AEB=90°,
∴∠AEC=90°,
∴∠C=90°﹣∠DAE=90°﹣34°=56°
【点睛】
本题主要考查圆周角定理、直径的性质、圆内接四边形的性质等知识,解决本题的关键是灵活运用所学知识解决问题.
22、,.
【解析】
试题分析:原式第二项利用除法法则变形,约分后两项通分并利用同分母分式的减法法则计算得到最简结果,把已知等式变形后代入计算即可求出值.
试题解析:
= = =,
∵a2+2a=9,
∴(a+1)2=1.
∴原式=.
23、(1)证明见解析;(1)证明见解析;(3)1.
【解析】
(1)连接OB、OC、OD,根据圆心角与圆周角的性质得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根据圆周角相等所对的弧相等得出结论.
(1)过点O作OM⊥AD于点M,又一组角相等,再根据平行线的性质得出对应边成比例,进而得出结论;
(3)延长EO交AB于点H,连接CG,连接OA,BC为⊙O直径,则∠G=∠CFE=∠FEG=90°,四边形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根据邻补角与余角的性质可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根据直角三角形的三角函数计算出边的长,根据“角角边”证明出△HBO∽△ABC,根据相似三角形的性质得出对应边成比例,进而得出结论.
【详解】
(1)如图1,连接OB、OC、OD,
∵∠BAD和∠BOD是所对的圆周角和圆心角,
∠CAD和∠COD是所对的圆周角和圆心角,
∴∠BOD=1∠BAD,∠COD=1∠CAD,
∵AD平分∠BAC,
∴∠BAD=∠CAD,
∴∠BOD=∠COD,
∴=;
(1)如图1,过点O作OM⊥AD于点M,
∴∠OMA=90°,AM=DM,
∵BE⊥AD于点E,CF⊥AD于点F,
∴∠CFM=90°,∠MEB=90°,
∴∠OMA=∠MEB,∠CFM=∠OMA,
∴OM∥BE,OM∥CF,
∴BE∥OM∥CF,
∴,
∵OB=OC,
∴=1,
∴FM=EM,
∴AM﹣FM=DM﹣EM,
∴DE=AF;
(3)延长EO交AB于点H,连接CG,连接OA.
∵BC为⊙O直径,
∴∠BAC=90°,∠G=90°,
∴∠G=∠CFE=∠FEG=90°,
∴四边形CFEG是矩形,
∴EG=CF,
∵AD平分∠BAC,
∴∠BAF=∠CAF=×90°=45°,
∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,
∠ACF=180°﹣∠CAF﹣∠AFC=45°,
∴∠BAF=∠ABE,∠ACF=∠CAF,
∴AE=BE,AF=CF,
在Rt△ACF中,∠AFC=90°,
∴sin∠CAF=,即sin45°=,
∴CF=1×=,
∴EG=,
∴EF=1EG=1,
∴AE=3,
在Rt△AEB中,∠AEB=90°,
∴AB==6,
∵AE=BE,OA=OB,
∴EH垂直平分AB,
∴BH=EH=3,
∵∠OHB=∠BAC,∠ABC=∠ABC
∴△HBO∽△ABC,
∴,
∴OH=1,
∴OE=EH﹣OH=3﹣1=1.
【点睛】
本题考查了相似三角形的判定与性质和圆的相关知识点,解题的关键是熟练的掌握相似三角形的判定与性质和圆的相关知识点.
24、共有7人,这个物品的价格是53元.
【解析】
根据题意,找出等量关系,列出一元一次方程.
【详解】
解:设共有x人,这个物品的价格是y元,
解得
答:共有7人,这个物品的价格是53元.
【点睛】
本题考查了二元一次方程的应用.
25、(1) x<﹣3或0<x<1;(2);(3)y=﹣2x﹣2.
【解析】
(1)不等式的解即为函数y=﹣2x+b的图象在函数y=上方的x的取值范围.可由图象直接得到.
(2)用b表示出OC和OF的长度,求出CF的长,进而求出sin∠OCB.
(3)求直线AB的解析式关键是求出b的值.
【详解】
解:(1)如图:
由图象得:不等式﹣2x+b>的解是x<﹣3或0<x<1;
(2)设直线AB和y轴的交点为F.
当y=0时,x=,即OC=﹣;
当x=0时,y=b,即OF=﹣b,∴CF==,∴sin∠OCB=sin∠OCF===.
(3)过A作AD⊥x轴,过B作BE⊥x轴,则AC=AD=,BC=,∴AC﹣BC=(yA+yB)=(xA+xB)=﹣5,又﹣2x+b=,所以﹣2x2+bx﹣k=0,∴,∴×b=﹣5,∴b=,∴y=﹣2x﹣2.
【点睛】
这道题主要考查反比例函数的图象与一次函数的交点问题,借助图象分析之间的关系,体现数形结合思想的重要性.
26、(1)(3,3);(2)顶点 N 坐标为(,);(3)详见解析;(4)<n< .
【解析】
(1)由正方形的性质及A、B、D三点的坐标求得AD=BC=1即可得;
(2)把(0,0)(n,0)代入y=-x2+bx+c求得b=n、c=0,据此可得函数解析式,配方成顶点式即可得出答案;
(3)将点N的坐标代入y=x2,看是否符合解析式即可;
(4)根据“小球发射之后能够直接入篮,球没有接触篮筐”知:当x=2时y>3,当x=3时y<2,据此列出关于n的不等式组,解之可得.
【详解】
(1)∵A(2,2),B(3,2),D(2,3),
∴AD=BC=1, 则点 C(3,3),
故答案为:(3,3);
(2)把(0,0)(n,0)代入 y=﹣x2+bx+c 得:
,
解得:,
∴抛物线解析式为 y=﹣x2+nx=﹣(x﹣)2+,
∴顶点 N 坐标为(,);
(3)由(2)把 x=代入 y=x2=()2= ,
∴抛物线的顶点在函数 y=x2的图象上运动;
(4)根据题意,得:当 x=2 时 y>3,当 x=3 时 y<2, 即,
解得:
本题主要考查二次函数的应用,解题的关键是掌握待定系数法求函数解析式、二次函数的性质及将实际问题转化为二次函数的问题能力.
27、(1)作图见解析;(2)作图见解析.
【解析】
试题分析:利用正六边形的特性作图即可.
试题解析:(1)如图所示(答案不唯一):
(2)如图所示(答案不唯一):
福建省建瓯市芝华中学2023-2024学年七年级下册第一次月考数学试题(含解析): 这是一份福建省建瓯市芝华中学2023-2024学年七年级下册第一次月考数学试题(含解析),共16页。试卷主要包含了填空题,解答题等内容,欢迎下载使用。
福建省南平三中学2022-2023学年中考数学模拟预测题含解析: 这是一份福建省南平三中学2022-2023学年中考数学模拟预测题含解析,共17页。
2023届上海新云台中学中考数学模拟预测题含解析: 这是一份2023届上海新云台中学中考数学模拟预测题含解析,共18页。