浙江省杭州拱墅区四校联考2023-2024学年九上数学期末联考试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。
2.答题时请按要求用笔。
3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.为测量某河的宽度,小军在河对岸选定一个目标点A,再在他所在的这一侧选点B,C,D,使得AB⊥BC,CD⊥BC,然后找出AD与BC的交点E,如图所示.若测得BE=90 m,EC=45 m,CD=60 m,则这条河的宽AB等于( )
A.120 mB.67.5 mC.40 mD.30 m
2.如图,四边形ABCD为⊙O的内接四边形,E是BC延长线上的一点,已知∠BOD=130°,则∠DCE的度数为( )
A.45°B.50°C.65°D.75°
3.下列图形中,可以看作是中心对称图形的是( )
A.B.C.D.
4.为了解我市居民用水情况,在某小区随机抽查了20户家庭,并将这些家庭的月用水量进行统计,结果如下表:
则关于这20户家庭的月用水量,下列说法正确的是( )
A.中位数是5B.平均数是5C.众数是6D.方差是6
5.若∽,相似比为,则与的周长比为( )
A.B.C.D.
6.如图,半径为3的⊙O内有一点A,OA=,点P在⊙O上,当∠OPA最大时,PA的长等于( )
A.B.C.3D.2
7.若一个圆锥的侧面积是底面积的2倍,则圆锥侧面展开图的扇形的圆心角为 ( )
A.120°B.180°C.240°D.300°
8.如图,四边形是的内接四边形,与的延长线交于点,与的延长线交于点,,,则的度数为( )
A.38°B.48°C.58°D.68°
9.若关于x的一元二次方程有两个实数根,则k的取值范围是()
A.B.C.D.
10.如图,四边形ABCD是正方形,延长BC到E,使,连接AE交CD于点F,则( )
A.67.5°B.65°C.55°D.45°
二、填空题(每小题3分,共24分)
11.点在抛物线上,则__________.(填“>”,“<”或“=”).
12.如图,△ABC为⊙O的内接三角形,若∠OBA=55°,则∠ACB=_____.
13.如图,点A,B,C都在⊙O上∠AOC=130°,∠ACB=40°,∠AOB=_____,弧BC=_____.
14.如果△ABC∽△DEF,且△ABC的三边长分别为4、5、6,△DEF的最短边长为12,那么△DEF的周长等于_____.
15.已知3是一元二次方程x2﹣2x+a=0的一个根,则a=_____.
16.若抛物线y=x2﹣4x+m与直线y=kx﹣13(k≠0)交于点(2,﹣9),则关于x的方程x2﹣4x+m=k(x﹣1)﹣11的解为_____.
17.小明家的客厅有一张直径为1.1米,高0.75米的圆桌BC,在距地面2米的A处有一盏灯,圆桌的影子为DE,依据题意建立平面直角坐标系,其中点D的坐标为(2,0),则点E的坐标是_________.
18.如图,在中,平分交于点,垂足为点,则__________.
三、解答题(共66分)
19.(10分)阅读材料,回答问题:
材料
题1:经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性的大小相同,求三辆汽车经过这个十字路口时,至少要两辆车向左转的概率
题2:有两把不同的锁和三把钥匙,其中两把钥匙分别能打开这两把锁(一把钥匙只能开一把锁),第三把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是多少?
我们可以用“袋中摸球”的试验来模拟题1:在口袋中放三个不同颜色的小球,红球表示直行,绿球表示向左转,黑球表示向右转,三辆汽车经过路口,相当于从三个这样的口袋中各随机摸出一球.
问题:
(1)事件“至少有两辆车向左转”相当于“袋中摸球”的试验中的什么事件?
(2)设计一个“袋中摸球”的试验模拟题2,请简要说明你的方案
(3)请直接写出题2的结果.
20.(6分)如图,△ABC的边BC在x轴上,且∠ACB=90°.反比例函数y=(x>0)的图象经过AB边的中点D,且与AC边相交于点E,连接CD.已知BC=2OB,△BCD的面积为1.
(1)求k的值;(2)若AE=BC,求点A的坐标.
21.(6分)某烘焙店生产的蛋糕礼盒分为六个档次,第一档次(即最低档次)的产品每天生产76件,每件利润为10元.调查表明:生产提高一个档次的蛋糕产品,该产品每件利润增加2元.
(1)若生产的某批次蛋糕每件利润为14元,此批次蛋糕属于第几档次产品?
(2)由于生产工序不同,蛋糕产品每提高一个档次,一天产量会减少4件.若生产的某档次产品一天的总利润为1080元,该烘焙店生产的是第几档次的产品?
22.(8分)如图,四边形OABC是矩形,ADEF是正方形,点A、D在x轴的正半轴上,点C在y轴的正半轴上,点F在AB上,点B,E在反比例函数y=的图象上,OA=1,OC=6,试求出正方形ADEF的边长.
23.(8分)有甲、乙、丙三个不透明的布袋,甲袋中装有2个相同的小球,它们分别标有字母A和B;乙袋中装有3个相同的小球,它们分别标有字母C、D和E;丙袋中装有2个相同的小球,它们分别标有字母H和I.从三个布袋中各随机取出一个小球.求:(1)取出的3个小球恰好有2个元音字母的概率;(2)取出的3个小球全是辅音字母的概率.
24.(8分)已知,直线与抛物线相交于、两点,且的坐标是
(1)求,的值;
(2)抛物线的表达式及其对称轴和顶点坐标.
25.(10分)在一个不透明的袋子中装有3个乒乓球,分别标有数字1,2,3,这些乒乓球除所标数字不同外其余均相同.先从袋子中随机摸出1个乒乓球,记下标号后放回,再从袋子中随机摸出1个乒乓球记下标号,用画树状图(或列表)的方法,求两次摸出的乒乓球标号之和是偶数的概率.
26.(10分)如图,矩形中,.为边上一动点(不与重合),过点作交直线于.
(1)求证:;
(2)当为中点时,恰好为的中点,求的值.
参考答案
一、选择题(每小题3分,共30分)
1、A
2、C
3、B
4、C
5、B
6、B
7、B
8、A
9、D
10、A
二、填空题(每小题3分,共24分)
11、>
12、35°
13、80° 50°
14、1
15、-3
16、x1=2,x2=1
17、(3.76,0)
18、
三、解答题(共66分)
19、题1.;题2.(1)至少摸出两个绿球;(2)方案详见解析;(3).
20、(1)k=12;(2)A(1,1).
21、 (1) 第3档次;(2) 第5档次
22、1.
23、(1);(2).
24、(1)m=9,a=1;(2)抛物线的表达式为y=x2,对称轴为y轴,顶点坐标为(0,0).
25、图形见解析,概率为
26、 (1)见解析;(2) 的值为.
月用水量(吨)
4
5
6
8
13
户数
4
5
7
3
1
浙江省杭州拱墅区四校联考2023-2024学年九年级数学第一学期期末考试模拟试题含答案: 这是一份浙江省杭州拱墅区四校联考2023-2024学年九年级数学第一学期期末考试模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,下列方程中是一元二次方程的是等内容,欢迎下载使用。
浙江省杭州拱墅区七校联考2023-2024学年数学九上期末复习检测模拟试题含答案: 这是一份浙江省杭州拱墅区七校联考2023-2024学年数学九上期末复习检测模拟试题含答案,共9页。试卷主要包含了方程的根是等内容,欢迎下载使用。
2023-2024学年浙江省杭州拱墅区四校联考八上数学期末联考试题含答案: 这是一份2023-2024学年浙江省杭州拱墅区四校联考八上数学期末联考试题含答案,共7页。试卷主要包含了下列各式等内容,欢迎下载使用。