浙江省杭州杭州经济开发区五校联考2023-2024学年九上数学期末教学质量检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(每小题3分,共30分)
1.某学校要种植一块面积为200m2的长方形草坪,要求两边长均不小于10m,则草坪的一边长y(单位:m)随另一边长x(单位:m)的变化而变化的图象可能是( )
A.B.C.D.
2.如图,A、B、C、D四个点均在O上,∠AOD=40°,弦DC的长等于半径,则∠B的度数为( )
A.40°B.45°C.50°D.55°
3.如图,下列条件中,能判定的是( )
A.B.C.D.
4.以半径为2的圆内接正三角形、正方形、正六边形的边心距为三边作三角形,则( )
A.不能构成三角形B.这个三角形是等腰三角形
C.这个三角形是直角三角形D.这个三角形是钝角三角形
5.八年级某同学6次数学小测验的成绩分别为:80分,85分,95分,95分,95分,100分,则该同学这6次成绩的众数和中位数分别是( )
A.95分,95分B.95分,90分C.90分,95分D.95分,85分
6.某公司为调动职工工作积极性,向工会代言人提供了两个加薪方案,要求他从中选择:
方案一:是12个月后,在年薪20000元的基础上每年提高500元(第一年年薪20000元);
方案二:是6个月后,在半年薪10000元的基础上每半年提高125元(第6个月末发薪水10000元);
但不管是选哪一种方案,公司都是每半年发一次工资,如果你是工会代言人,认为哪种方案对员工更有利?( )
A.方案一B.方案二
C.两种方案一样D.工龄短的选方案一,工龄长的选方案二
7.如图,点A、B、C、D均在边长为1的正方形网格的格点上,则sin∠BAC的值为( )
A.B.1C.D.
8.如图,,,,四点都在上,,则的度数为( )
A.B.C.D.
9.关于反比例函数,下列说法正确的是( )
A.图象过(1,2)点B.图象在第一、三象限
C.当x>0时,y随x的增大而减小D.当x<0时,y随x的增大而增大
10.已知等腰三角形ABC中,腰AB=8,底BC=5,则这个三角形的周长为( )
A.21B.20C.19D.18
二、填空题(每小题3分,共24分)
11.如图,的顶点和分别在轴、轴的正半轴上,且轴,点,将以点为旋转中心顺时针方向旋转得到,恰好有一反比例函数图象恰好过点,则的值为___________.
12.一学校为了绿化校园环境,向某园林公司购买了一批树苗,园林公司规定:如果购买树苗不超过60棵,每棵售价为120元;如果购买树苗超过60棵,在一定范围内,每增加1棵,所出售的这批树苗每棵售价降低0.5元,若该校最终向园林公司支付树苗款8800元,设该校共购买了棵树苗,则可列出方程__________.
13.关于x的一元二次方程kx2+3x﹣1=0有实数根,则k的取值范围是_____.
14.如图,为了测量塔的高度,小明在处仰望塔顶,测得仰角为,再往塔的方向前进至处,测得仰角为,那么塔的高度是____________.(小明的身高忽略不计,结果保留根号)
15.一人乘雪橇沿坡比1:的斜坡笔直滑下,滑下的距离s(米)与时间t(秒)间的关系为s =10t+2t2,若滑到坡底的时间为4秒,则此人下降的高度为_______.
16.如图所示是某种货号的直三棱柱(底面是等腰直角三角形)零件的三视图,则它的表面积为__________
17.绕着A点旋转后得到,若,,则旋转角等于_____.
18.如图所示,矩形纸片中,,把它分割成正方形纸片和矩形纸片后,分别裁出扇形和半径最大的圆,恰好能作一个圆锥的侧面和底面,则的长为__________.
三、解答题(共66分)
19.(10分)关于的一元二次方程有实数根.
(1)求的取值范围;
(2)如果是符合条件的最大整数,且一元二次方程与方程有一个相同的根,求此时的值.
20.(6分)如图,的顶点坐标分别为,,.
(1)画出关于点的中心对称图形;
(2)画出绕原点逆时针旋转的,直接写出点的坐标为_________;
(3)若内一点绕原点逆时针旋转的对应点为,则的坐标为____________.(用含,的式子表示)
21.(6分)某商店销售一种销售成本为40元/千克的水产品,若按50元/千克销售,一个月可售出500千克,销售单价每涨价1元,月销售量就减少10千克.
(1)①求出月销售量y(千克)与销售单价x(元/千克)之间的函数关系式;
②求出月销售利润w(元)与销售单价x(元/千克)之间的函数关系式;
(2)在月销售成本不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为多少元?
(3)当销售单价定为多少元时,能获得最大利润?最大利润是多少元?
22.(8分)计算:2cs230°+﹣sin60°.
23.(8分)在正方形和等腰直角中,,是的中点,连接、.
(1)如图1,当点在边上时,延长交于点.求证:;
(2)如图2,当点在的延长线上时,(1)中的结论是否成立?请证明你的结论;
(3)如图3,若四边形为菱形,且,为等边三角形,点在的延长线上时,线段、又有怎样的数量关系,请直接写出你的结论,并画出论证过程中需要添加的辅助线.
24.(8分)如图,在边长为1的正方形组成的网格中,的顶点均在格点上,点,的坐标分别是,,绕点逆时针旋转后得到.
(1)画出,直接写出点,的坐标;
(2)求在旋转过程中,点经过的路径的长;
(3)求在旋转过程中,线段所扫过的面积.
25.(10分)已知双曲线经过点B(2,1).
(1)求双曲线的解析式;
(2)若点与点都在双曲线上,且,直接写出、的大小关系.
26.(10分)如图,已知正方形ABCD的边长为8,点E是DC上的一动点,过点作EF⊥AE,交BC于点F,连结AF.
(1)证明:△ADE∽△ECF;
(2)若△ADE的周长与△ECF的周长之比为4:3,求BF的长.
参考答案
一、选择题(每小题3分,共30分)
1、C
2、C
3、D
4、C
5、A
6、B
7、A
8、C
9、D
10、A
二、填空题(每小题3分,共24分)
11、-24
12、
13、且
14、
15、36m
16、 (28+20)
17、50°或210°
18、cm.
三、解答题(共66分)
19、(1);(2)的值为.
20、(1)详见解析;(2)图详见解析,点的坐标为;(3)的坐标为.
21、(1)①y=﹣10x+1000;②w=﹣10x2+1400x﹣40000;(2)不超过10000元的情况下,使月销售利润达到8000元,销售单价应定为80元;(3)售价定为70元时会获得最大利润,最大利润是9000元
22、
23、(1)证明见解析;(2)成立,证明见解析;(3),图详见解析.
24、(1)见解析,;(2);(3)
25、(1);(2)
26、(1)详见解析;(2)6.5.
浙江省杭州市萧山区厢片五校2023-2024学年九上数学期末达标检测模拟试题含答案: 这是一份浙江省杭州市萧山区厢片五校2023-2024学年九上数学期末达标检测模拟试题含答案,共7页。试卷主要包含了答题时请按要求用笔等内容,欢迎下载使用。
浙江杭州经济开发区六校联考2023-2024学年九上数学期末统考模拟试题含答案: 这是一份浙江杭州经济开发区六校联考2023-2024学年九上数学期末统考模拟试题含答案,共8页。试卷主要包含了考生必须保证答题卡的整洁,方程的解是,《九章算术》中记载一问题如下等内容,欢迎下载使用。
2023-2024学年浙江省杭州市萧山区城厢片五校九上数学期末联考模拟试题含答案: 这是一份2023-2024学年浙江省杭州市萧山区城厢片五校九上数学期末联考模拟试题含答案,共8页。试卷主要包含了下列函数的对称轴是直线的是等内容,欢迎下载使用。