浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】
展开一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、(4分)为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )
A.2013年昆明市九年级学生是总体B.每一名九年级学生是个体
C.1000名九年级学生是总体的一个样本D.样本容量是1000
2、(4分)对于函数下列说法正确的是
A.当时,y随x的增大而增大B.当时,y随x的增大而减小
C.当时,y随x的增大而减小D.当时,
3、(4分)下列语句中,属于命题的是( )
A.任何一元二次方程都有实数解B.作直线 AB 的平行线
C.∠1 与∠2 相等吗D.若 2a2=9,求 a 的值
4、(4分)方程的解是( )
A.4B.±2C.2D.-2
5、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
A.16B.19C.22D.25
6、(4分)不等式 的正整数解的个数是( )
A.7个B.6个C.4个D.0个
7、(4分)点,点是一次函数图象上的两个点,且,则与的大小关系是( )
A.B.C.D.
8、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
A.2%B.4.4%C.20%D.44%
二、填空题(本大题共5个小题,每小题4分,共20分)
9、(4分)= ▲ .
10、(4分)已知.若整数满足.则=_________.
11、(4分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=_____度.
12、(4分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=_____.
13、(4分)如图 是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分 率是_____,图中表示金牌百分率的扇形的圆心角度数约是____________.(精确到 1°)
三、解答题(本大题共5个小题,共48分)
14、(12分)先化简,再求值:÷(a-1+),其中a=.
15、(8分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是该直线上的一个动点,探究:当△OPA的面积为27时,求点P的坐标.
16、(8分)在平面直角坐标系xOy中,点A(0,4),B(1,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+1.
(1)当直线l经过D点时,求点D的坐标及k的值;
(2)当直线L与正方形有两个交点时,直接写出k的取值范围.
17、(10分)如图,在中,,,,,求的长.
18、(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
(1)慢车的速度为 km/h,快车的速度为 km/h;
(2)解释图中点C的实际意义并求出点C的坐标;
(3)求当x为多少时,两车之间的距离为500km.
B卷(50分)
一、填空题(本大题共5个小题,每小题4分,共20分)
19、(4分)已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
20、(4分)一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.
21、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
22、(4分)如图,在平行四边形 ABCD 中, AD 2 AB ;CF 平分 BCD 交 AD 于 F ,作 CE AB , 垂足 E 在边 AB 上,连接 EF .则下列结论:① F 是 AD 的中点; ② S△EBC 2S△CEF;③ EF CF ; ④ DFE 3AEF .其中一定成立的是_____.(把所有正确结论的序号都填在横线上)
23、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
二、解答题(本大题共3个小题,共30分)
24、(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
设某户每月用水量x(立方米),应交水费y(元).
(1)求a,c的值;
(2)当x≤6,x≥6时,分别写出y与x的函数关系式;
(3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
25、(10分)某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.
请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
26、(12分)直线L与y=2x+1的交于点A(2,a),与直线y=x+2的交于点B(b,1)
(1)求a,b的值;
(2)求直线l的函数表达式;
(3)求直线L、x轴、直线y=2x+1围成的图形的面积.
参考答案与详细解析
一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
1、D
【解析】
试题分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可:
A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;
B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;
C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;
D、样本容量是1000,该说法正确,故本选项正确.
故选D.
2、C
【解析】
根据分段函数的性质解答即可.
【详解】
解:A、当时,y随x的增大而减小,错误;
B、当时,y随x的增大而增大,错误;
C、当时,y随x的增大而减小,正确;
D、当时,,错误;
故选:C.
本题主要考查一次函数的性质,掌握分段函数的性质解答是解题的关键.
3、A
【解析】
用命题的定义进行判断即可(命题就是判断一件事情的句子).
【详解】
解:A项是用语言可以判断真假的陈述句,符合命题定义,是命题,B、C、D三项均不是判断一件事情的句子,都不是命题,故选A.
本题考查了命题的定义:命题就是判断一件事情的句子. 一般来说,命题都可以表示成“如果…那么…”的形式,如本题中的A项就可表示成“如果一个方程是一元二次方程,那么这个方程有实数解”,而其它三项皆不可.
4、B
【解析】
解: ∵,∴,
∴方程的解:,.
故选B.
考点:1.解一元二次方程-因式分解法;2.因式分解.
5、C
【解析】
首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
【详解】
解:∵四边形ABCD为矩形,
∴B′C=BC=AD,∠B′=∠B=∠D=90°
∵∠B′EC=∠DEA,
在△AED和△CEB′中,
,
∴△AED≌△CEB′(AAS);
∴EA=EC,
∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
=AD+DE+EC+EA+EB′+B′C,
=AD+DC+AB′+B′C,
=3+8+8+3,
=22,
故选:C.
本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
6、B
【解析】
先解不等式求得不等式的解集,再确定正整数解即可.
【详解】
3(x+1)>2(2x+1)-6
3x+3>4x+2-6
3x-4x>2-6-3
-x>-7
x<7
∴不等式的正整数解为1、2、3、4、5、6,共6个.
故选B.
本题考查了求一元一次不等式的正整数解,正确求得不等式的解集是解决本题的关键.
7、A
【解析】
根据一次函数的增减性即可判断.
【详解】
∴函数,y随x的增大而减小,当时,.故选A.
此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像性质.
8、C
【解析】
分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
根据题意得:2(1+x)2=2.88,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
故选C.
点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
二、填空题(本大题共5个小题,每小题4分,共20分)
9、1.
【解析】
针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
10、2
【解析】
根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.
【详解】
解:,
∴
解得:.
∵为整数,
.
∴
∴
故答案为:2;
本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.
11、1
【解析】
先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.
【详解】
解:设∠BAE=x°.
∵四边形ABCD是正方形,
∴∠BAD=90°,AB=AD.
∵AE=AB,
∴AB=AE=AD,
∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,
∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=1°+x°,
∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(1°+x°)=1°.
故答案为1.
点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.
12、2
【解析】
解:过D点作DE⊥x轴,垂足为E,
∵Rt△OAB中,∠OAB=90°,
∴DE∥AB,
∵D为Rt△OAB斜边OB的中点D,
∴DE为Rt△OAB的中位线,
∵△OED∽△OAB,
∴两三角形的相似比为,
∵双曲线,可知,
,
由,
得,
解得
13、51%; 184°.
【解析】
先利用1-28-21得出金牌数占奖牌总数的百分比,然后用360°去乘这个百分比即可.
【详解】
解:1-28%-21%=51%
360°×51%=183.6°184°
故答案为:51%;184°
考查扇形统计图的制作方法,明确扇形统计图的特点,是解决问题的关键.
三、解答题(本大题共5个小题,共48分)
14、;
【解析】
根据分式的加法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
【详解】
解:,
,
,
,
当时,原式.
本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
15、 (1) ; (2) (4,9)或(-20,-9).
【解析】
分析:
(1)将点E(-8,0)代入y=kx+6中即可解得k的值;
(2)由已知易得OA=6,由(1)中所得k的值可得直线EF的解析式为:,设点P的坐标为(x,y),则点P到OA的距离为,由此可得S△OAP=,从而可得,结合解得对应的的值即可得到点P的坐标.
详解:
(1)将点E(-8,0)代入到y=kx+6中,得:-8k+6=0,
解得:;
(2)∵,
∴直线EF的解析式为:.
∵点A的坐标为(-6,0),
∴OA=6,
设点P的坐标为(x,y),则点P到OA的距离为,
∴S△OAP=,解得:,
∵,
∴或,
解得:或,
∴当△OPA的面积为27时,点P的坐标为(4,9)或(-20,-9).
点睛:“设点P的坐标为(x,y),则点P到OA的距离为,由此结合已知条件得到:S△OAP=OA·”是解答本题的关键.
16、(2)D(4,7),k=2;(2)k>﹣2
【解析】试题分析:(2)过D点作DE⊥y轴,证△AED≌△BOA,根据全等求出DE=AO=4,AE=OB=2,即可得出D的坐标,把D的坐标代入解析式即可求出k的值;
(2)把B的坐标代入求出K的值,即可得出答案.
试题解析:解:(2)如图,过D点作DE⊥y轴,
则∠AED=∠2+∠2=90°.
在正方形ABCD中,∠DAB=90°,AD=AB.
∴∠2+∠2=90°,
∴∠2=∠2.
又∵∠AOB=∠AED=90°,
在△AED和△BOA中,
,
∴△AED≌△BOA,
∴DE=AO=4,AE=OB=2,
∴OE=7,
∴D点坐标为(4,7),
把D(4,7)代入y=kx+2,得k=2;
(2)当直线y=kx+2过B点时,把(2,0)代入得:0=2k+2,
解得:k=﹣2.
所以当直线l与正方形有两个交点时,k的取值范围是k>﹣2.
考点:一次函数综合题
17、
【解析】
在求出BD的长,在中求出CD的长,利用BC=BD+CD可得出结果.
【详解】
解:,
.
在中,
,
,
.
在中,
,
.
.
.
本题主要考查勾股定理,以及含特殊角的直角三角形边之间的关系,掌握基本公式是解题关键.
18、80 120
【解析】
(1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
(2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
(3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
【详解】
(1)设慢车的速度为akm/h,快车的速度为bkm/h,
根据题意,得 ,解得 ,
故答案为80,120;
(2)图中点C的实际意义是:快车到达乙地;
∵快车走完全程所需时间为720÷120=6(h),
∴点C的横坐标为6,
纵坐标为(80+120)×(6﹣3.6)=480,
即点C(6,480);
(3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
即相遇前:(80+120)x=720﹣500,
解得x=1.1,
相遇后:∵点C(6,480),
∴慢车行驶20km两车之间的距离为500km,
∵慢车行驶20km需要的时间是=0.25(h),
∴x=6+0.25=6.25(h),
故x=1.1 h或6.25 h,两车之间的距离为500km.
考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
一、填空题(本大题共5个小题,每小题4分,共20分)
19、14
【解析】
根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
【详解】
解:如图,在菱形ABCD中,BD=2.
∵菱形的周长为10,BD=2,
∴AB=5,BO=3,
∴ AC=3.
∴面积
故答案为 14.
此题考查了菱形的性质及面积求法,难度不大.
20、1
【解析】
先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.
【详解】
解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,
s1= [(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.
故答案为1.
本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
21、y=2x+1.
【解析】
用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
【详解】
解:把(﹣1,2),(0,1)分别代入y=kx+b得,
,
解得,
所以,y=2x+1.
故答案为y=2x+1.
本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
22、①③④.
【解析】
由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.
【详解】
解:∵四边形ABCD为平行四边形,∴AD∥BC,
∴∠DFC=∠BCF,
∵CF平分∠BCD,∴∠BCF=∠DCF,
∴∠DFC=∠DCF,∴CD=DF,
∵AD=2AB, ∴AD=2CD,
∴AF=FD=CD,即F为AD的中点,故①正确;
延长EF,交CD延长线于M,如图,
∵四边形ABCD是平行四边形, ∴AB∥CD,
∴∠A=∠MDF,
∵F为AD中点,∴AF=FD,
又∵∠AFE=∠DFM,
∴△AEF≌△DMF(ASA),
∴FE=MF,∠AEF=∠M,
∵CE⊥AB,∴∠AEC=90°,
∴∠ECD=∠AEC=90°,
∵FM=EF,∴FC=FM,故③正确;
∵FM=EF,∴,
∵MC>BE,
∴<2,故②不正确;
设∠FEC=x,则∠FCE=x,
∴∠DCF=∠DFC=90°-x,
∴∠EFC=180°-2x,
∴∠EFD=90°-x+180°-2x=270°-3x ,
∵∠AEF=90°-x,
∴∠DFE=3∠AEF,故④正确;
综上可知正确的结论为①③④.
故答案为①③④.
本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强. 解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.
23、3≤S≤1.
【解析】
根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.
【详解】
∵点A、B的坐标分别为(-5,0)、(-2,0),
∴AB=3,
y=-2x2+4x+8=-2(x-1)2+10,
∴顶点D(1,10),
由图象得:当0≤x≤1时,y随x的增大而增大,
当1≤x≤3时,y随x的增大而减小,
∴当x=3时,即m=3,P的纵坐标最小,
y=-2(3-1)2+10=2,
此时S△PAB=×2AB=×2×3=3,
当x=1时,即m=1,P的纵坐标最大是10,
此时S△PAB=×10AB=×10×3=1,
∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;
故答案为3≤S≤1.
本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.
二、解答题(本大题共3个小题,共30分)
24、 (1)1.5;6;(2)y=6x-27,(x>6);(3)21元.
【解析】
(1)根据表格中的数据,9月份属于第一种收费,5a=7.5;10月份属于第二种收费,6a+(9-6)c=27;即可求出a、c的值;(2)就是求分段函数解析式;(3)代入解析式求函数值.
【详解】
解:(1)由题意5a=7.5,解得a=1.5;
6a+(9−6)c=27,解得c=6.
∴a=1.5,c=6
(2)依照题意,
当x≤6时,y=1.5x;
当x≥6时,y=6×1.5+6×(x−6)=9+6(x−6)=6x−27,
(3)将x=8代入y=6x−27(x>6)得y=6×8−27=21(元).
答:该户11 月份水费是21元.
主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
25、问题:甲、乙两种奖品的单价分别是多少元?
每件甲种奖品为16元,每件乙种奖品为12元.
【解析】
首先提出问题,例如:甲、乙两种奖品的单价分别是多少元?然后根据本题的等量关系列出方程并求解。
【详解】
问题:甲、乙两种奖品的单价分别是多少元?
解:设每件乙种奖品为x元,则每件甲种奖品为(x+4)元,列方程得:
160x=120(x+4)
x=12
经检验,x=12是原分式方程的解。
则:x+4=16
答:每件甲种奖品为16元,每件乙种奖品为12元.
本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。
26、(1)a=5,b=﹣1;(2)y=x+;(3)直线L、x轴、直线y=2x+1围成的图形的面积为.
【解析】
(1)把A,B的坐标代入解析式即可解答
(2)设直线L的解析式为:y=kx+b,代入A,B的坐标即可
(3)求出直线L与x轴交于(﹣ ,0),直线y=2x+1与x轴交于(﹣ ,0),即可根据三角形面积公式进行解答
【详解】
(1)把A(2,a)代入y=2x+1得a=2×2+1=5,
故a=5,
把B(b,1)代入y=x+2得,1=b+2,
∴b=﹣1,
(2)设直线L的解析式为:y=kx+b,
把A(2,5),B(﹣1,1)代入得 ,
解得: ,
∴直线l的函数表达式为y=x+ ;
(3)∵直线L与x轴交于(﹣ ,0),直线y=2x+1与x轴交于(﹣ ,0),
∴直线L、x轴、直线y=2x+1围成的图形的面积=×(﹣+)×5=.
此题考查一次函数中的直线位置关系,解题关键在于把已知点代入解析式
题号
一
二
三
四
五
总分
得分
批阅人
浙江省杭州市江干区实验中学2025届九上数学开学预测试题【含答案】: 这是一份浙江省杭州市江干区实验中学2025届九上数学开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
浙江省杭州市城区六校联考2024年九上数学开学调研模拟试题【含答案】: 这是一份浙江省杭州市城区六校联考2024年九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2025届浙江省杭州滨江区六校联考数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届浙江省杭州滨江区六校联考数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。