|试卷下载
终身会员
搜索
    上传资料 赚现金
    浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】
    立即下载
    加入资料篮
    浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】01
    浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】02
    浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】03
    还剩19页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】

    展开
    这是一份浙江省杭州江干区六校联考2024-2025学年数学九上开学检测模拟试题【含答案】,共22页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、(4分)为了了解2013年昆明市九年级学生学业水平考试的数学成绩,从中随机抽取了1000名学生的数学成绩.下列说法正确的是( )
    A.2013年昆明市九年级学生是总体B.每一名九年级学生是个体
    C.1000名九年级学生是总体的一个样本D.样本容量是1000
    2、(4分)对于函数下列说法正确的是
    A.当时,y随x的增大而增大B.当时,y随x的增大而减小
    C.当时,y随x的增大而减小D.当时,
    3、(4分)下列语句中,属于命题的是( )
    A.任何一元二次方程都有实数解B.作直线 AB 的平行线
    C.∠1 与∠2 相等吗D.若 2a2=9,求 a 的值
    4、(4分)方程的解是( )
    A.4B.±2C.2D.-2
    5、(4分)如图,将矩形纸片ABCD沿其对角线AC折叠,使点B落到点B′的位置,AB′与CD交于点E,若AB=8,AD=3,则图中阴影部分的周长为( )
    A.16B.19C.22D.25
    6、(4分)不等式 的正整数解的个数是( )
    A.7个B.6个C.4个D.0个
    7、(4分)点,点是一次函数图象上的两个点,且,则与的大小关系是( )
    A.B.C.D.
    8、(4分)某市从2017年开始大力发展“竹文化”旅游产业.据统计,该市2017年“竹文化”旅游收入约为2亿元.预计2019“竹文化”旅游收入达到2.88亿元,据此估计该市2018年、2019年“竹文化”旅游收入的年平均增长率约为( )
    A.2%B.4.4%C.20%D.44%
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、(4分)= ▲ .
    10、(4分)已知.若整数满足.则=_________.
    11、(4分)如图,正方形ABCD中,AE=AB,直线DE交BC于点F,则∠BEF=_____度.
    12、(4分)如图,已知双曲线y=(k>0)经过直角三角形OAB斜边OB的中点D,与直角边AB相交于点C.若△OBC的面积为3,则k=_____.
    13、(4分)如图 是中国在奥运会中获奖牌扇形统计图,由图可知,金牌数占奖牌总数的百分 率是_____,图中表示金牌百分率的扇形的圆心角度数约是____________.(精确到 1°)
    三、解答题(本大题共5个小题,共48分)
    14、(12分)先化简,再求值:÷(a-1+),其中a=.
    15、(8分)如图,直线y=kx+6分别与x轴、y轴交于点E,F,已知点E的坐标为(-8,0),点A的坐标为(-6,0).
    (1)求k的值;
    (2)若点P(x,y)是该直线上的一个动点,探究:当△OPA的面积为27时,求点P的坐标.
    16、(8分)在平面直角坐标系xOy中,点A(0,4),B(1,0),以AB为边在第一象限内作正方形ABCD,直线L:y=kx+1.
    (1)当直线l经过D点时,求点D的坐标及k的值;
    (2)当直线L与正方形有两个交点时,直接写出k的取值范围.
    17、(10分)如图,在中,,,,,求的长.
    18、(10分)一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地.两车行驶的时间为xh,两车之间的距离为ykm,图中的折线表示y与x之间的函数关系,根据图象解决以下问题:
    (1)慢车的速度为 km/h,快车的速度为 km/h;
    (2)解释图中点C的实际意义并求出点C的坐标;
    (3)求当x为多少时,两车之间的距离为500km.
    B卷(50分)
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、(4分)已知菱形的周长为10cm,一条对角线长为6cm,则这个菱形的面积是_____cm1.
    20、(4分)一组数据;1,3,﹣1,2,x的平均数是1,那么这组数据的方差是_____.
    21、(4分)已知一次函数经过,且与y轴交点的纵坐标为4,则它的解析式为______.
    22、(4分)如图,在平行四边形 ABCD 中, AD  2 AB ;CF 平分 BCD 交 AD 于 F ,作 CE  AB , 垂足 E 在边 AB 上,连接 EF .则下列结论:① F 是 AD 的中点; ② S△EBC  2S△CEF;③ EF  CF ; ④ DFE  3AEF .其中一定成立的是_____.(把所有正确结论的序号都填在横线上)
    23、(4分)如图,在平面直角坐标系中,点A、B的坐标分别为(﹣5,0)、(﹣2,0).点P在抛物线y=﹣2x2+4x+8上,设点P的横坐标为m.当0≤m≤3时,△PAB的面积S的取值范围是_____.
    二、解答题(本大题共3个小题,共30分)
    24、(8分)为了加强公民的节水意识,合理利用水资源,各地采用价格调控手段达到节约用水的目的,某市规定如下用水收费标准:每户每月的用水量不超过6立方米时,水费按每立方米a元收费,超过6立方米时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按c元收费,该市某户今年9、10月份的用水量和所交水费如下表所示:
    设某户每月用水量x(立方米),应交水费y(元).
    (1)求a,c的值;
    (2)当x≤6,x≥6时,分别写出y与x的函数关系式;
    (3)若该户11月份用水量为8立方米,求该户11月份水费是多少元?
    25、(10分)某班级为奖励参加校运动会的运动员,分别用160元和120元购买了相同数量的甲、乙两种奖品,其中每件甲种奖品比每件乙种奖品贵4元.
    请你根据以上信息,提出一个用分式方程解决的问题,并写出解答过程.
    26、(12分)直线L与y=2x+1的交于点A(2,a),与直线y=x+2的交于点B(b,1)
    (1)求a,b的值;
    (2)求直线l的函数表达式;
    (3)求直线L、x轴、直线y=2x+1围成的图形的面积.
    参考答案与详细解析
    一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)
    1、D
    【解析】
    试题分析:根据总体、个体、样本、样本容量的概念结合选项选出正确答案即可:
    A、2013年昆明市九年级学生的数学成绩是总体,原说法错误,故本选项错误;
    B、每一名九年级学生的数学成绩是个体,原说法错误,故本选项错误;
    C、1000名九年级学生的数学成绩是总体的一个样本,原说法错误,故本选项错误;
    D、样本容量是1000,该说法正确,故本选项正确.
    故选D.
    2、C
    【解析】
    根据分段函数的性质解答即可.
    【详解】
    解:A、当时,y随x的增大而减小,错误;
    B、当时,y随x的增大而增大,错误;
    C、当时,y随x的增大而减小,正确;
    D、当时,,错误;
    故选:C.
    本题主要考查一次函数的性质,掌握分段函数的性质解答是解题的关键.
    3、A
    【解析】
    用命题的定义进行判断即可(命题就是判断一件事情的句子).
    【详解】
    解:A项是用语言可以判断真假的陈述句,符合命题定义,是命题,B、C、D三项均不是判断一件事情的句子,都不是命题,故选A.
    本题考查了命题的定义:命题就是判断一件事情的句子. 一般来说,命题都可以表示成“如果…那么…”的形式,如本题中的A项就可表示成“如果一个方程是一元二次方程,那么这个方程有实数解”,而其它三项皆不可.
    4、B
    【解析】
    解: ∵,∴,
    ∴方程的解:,.
    故选B.
    考点:1.解一元二次方程-因式分解法;2.因式分解.
    5、C
    【解析】
    首先由四边形ABCD为矩形及折叠的特性,得到B′C=BC=AD,∠B′=∠B=∠D=90°,∠B′EC=∠DEA,得到△AED≌△CEB′,得出EA=EC,再由阴影部分的周长为AD+DE+EA+EB′+B′C+EC,即矩形的周长解答即可.
    【详解】
    解:∵四边形ABCD为矩形,
    ∴B′C=BC=AD,∠B′=∠B=∠D=90°
    ∵∠B′EC=∠DEA,
    在△AED和△CEB′中,

    ∴△AED≌△CEB′(AAS);
    ∴EA=EC,
    ∴阴影部分的周长为AD+DE+EA+EB′+B′C+EC,
    =AD+DE+EC+EA+EB′+B′C,
    =AD+DC+AB′+B′C,
    =3+8+8+3,
    =22,
    故选:C.
    本题主要考查了图形的折叠问题,全等三角形的判定和性质,及矩形的性质.熟记翻折前后两个图形能够重合找出相等的角是解题的关键.
    6、B
    【解析】
    先解不等式求得不等式的解集,再确定正整数解即可.
    【详解】
    3(x+1)>2(2x+1)-6
    3x+3>4x+2-6
    3x-4x>2-6-3
    -x>-7
    x<7
    ∴不等式的正整数解为1、2、3、4、5、6,共6个.
    故选B.
    本题考查了求一元一次不等式的正整数解,正确求得不等式的解集是解决本题的关键.
    7、A
    【解析】
    根据一次函数的增减性即可判断.
    【详解】
    ∴函数,y随x的增大而减小,当时,.故选A.
    此题主要考查一次函数的图像,解题的关键是熟知一次函数的图像性质.
    8、C
    【解析】
    分析:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,根据2017年及2019年“竹文化”旅游收入总额,即可得出关于x的一元二次方程,解之取其正值即可得出结论.
    详解:设该市2018年、2019年“竹文化”旅游收入的年平均增长率为x,
    根据题意得:2(1+x)2=2.88,
    解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
    答:该市2018年、2019年“竹文化”旅游收入的年平均增长率约为20%.
    故选C.
    点睛:本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.
    二、填空题(本大题共5个小题,每小题4分,共20分)
    9、1.
    【解析】
    针对零指数幂,二次根式化简和运算等考点分别进行计算,然后根据实数的运算法则求得计算结果:.
    10、2
    【解析】
    根据题意可知m-3≤0,被开方数是非负数列不等式组可得m的取值,又根据,表示m的值代入不等式的解集中可得结论.
    【详解】
    解:,

    解得:.
    ∵为整数,



    故答案为:2;
    本题考查了二次根式的性质和估算、不等式组的解法,有难度,能正确表示m的值是本题的关键.
    11、1
    【解析】
    先设∠BAE=x°,根据正方形性质推出AB=AE=AD,∠BAD=90°,根据等腰三角形性质和三角形的内角和定理求出∠AEB和∠AED的度数,根据平角定义求出即可.
    【详解】
    解:设∠BAE=x°.
    ∵四边形ABCD是正方形,
    ∴∠BAD=90°,AB=AD.
    ∵AE=AB,
    ∴AB=AE=AD,
    ∴∠ABE=∠AEB=(180°﹣∠BAE)=90°﹣x°,∠DAE=90°﹣x°,
    ∠AED=∠ADE=(180°﹣∠DAE)=[180°﹣(90°﹣x°)]=1°+x°,
    ∴∠BEF=180°﹣∠AEB﹣∠AED=180°﹣(90°﹣x°)﹣(1°+x°)=1°.
    故答案为1.
    点睛:本题考查了三角形的内角和定理的运用,等腰三角形的性质的运用,正方形性质的应用,解答此题的关键是如何把已知角的未知角结合起来,题目比较典型,但是难度较大.
    12、2
    【解析】
    解:过D点作DE⊥x轴,垂足为E,
    ∵Rt△OAB中,∠OAB=90°,
    ∴DE∥AB,
    ∵D为Rt△OAB斜边OB的中点D,
    ∴DE为Rt△OAB的中位线,
    ∵△OED∽△OAB,
    ∴两三角形的相似比为,
    ∵双曲线,可知,

    由,
    得,
    解得
    13、51%; 184°.
    【解析】
    先利用1-28-21得出金牌数占奖牌总数的百分比,然后用360°去乘这个百分比即可.
    【详解】
    解:1-28%-21%=51%
    360°×51%=183.6°184°
    故答案为:51%;184°
    考查扇形统计图的制作方法,明确扇形统计图的特点,是解决问题的关键.
    三、解答题(本大题共5个小题,共48分)
    14、;
    【解析】
    根据分式的加法和除法可以化简题目中的式子,然后将的值代入化简后的式子即可解答本题.
    【详解】
    解:,



    当时,原式.
    本题考查分式的化简求值,解答本题的关键是明确分式化简求值的方法.
    15、 (1) ; (2) (4,9)或(-20,-9).
    【解析】
    分析:
    (1)将点E(-8,0)代入y=kx+6中即可解得k的值;
    (2)由已知易得OA=6,由(1)中所得k的值可得直线EF的解析式为:,设点P的坐标为(x,y),则点P到OA的距离为,由此可得S△OAP=,从而可得,结合解得对应的的值即可得到点P的坐标.
    详解:
    (1)将点E(-8,0)代入到y=kx+6中,得:-8k+6=0,
    解得:;
    (2)∵,
    ∴直线EF的解析式为:.
    ∵点A的坐标为(-6,0),
    ∴OA=6,
    设点P的坐标为(x,y),则点P到OA的距离为,
    ∴S△OAP=,解得:,
    ∵,
    ∴或,
    解得:或,
    ∴当△OPA的面积为27时,点P的坐标为(4,9)或(-20,-9).
    点睛:“设点P的坐标为(x,y),则点P到OA的距离为,由此结合已知条件得到:S△OAP=OA·”是解答本题的关键.
    16、(2)D(4,7),k=2;(2)k>﹣2
    【解析】试题分析:(2)过D点作DE⊥y轴,证△AED≌△BOA,根据全等求出DE=AO=4,AE=OB=2,即可得出D的坐标,把D的坐标代入解析式即可求出k的值;
    (2)把B的坐标代入求出K的值,即可得出答案.
    试题解析:解:(2)如图,过D点作DE⊥y轴,
    则∠AED=∠2+∠2=90°.
    在正方形ABCD中,∠DAB=90°,AD=AB.
    ∴∠2+∠2=90°,
    ∴∠2=∠2.
    又∵∠AOB=∠AED=90°,
    在△AED和△BOA中,

    ∴△AED≌△BOA,
    ∴DE=AO=4,AE=OB=2,
    ∴OE=7,
    ∴D点坐标为(4,7),
    把D(4,7)代入y=kx+2,得k=2;
    (2)当直线y=kx+2过B点时,把(2,0)代入得:0=2k+2,
    解得:k=﹣2.
    所以当直线l与正方形有两个交点时,k的取值范围是k>﹣2.
    考点:一次函数综合题
    17、
    【解析】
    在求出BD的长,在中求出CD的长,利用BC=BD+CD可得出结果.
    【详解】
    解:,
    .
    在中,


    .
    在中,

    .
    .
    .
    本题主要考查勾股定理,以及含特殊角的直角三角形边之间的关系,掌握基本公式是解题关键.
    18、80 120
    【解析】
    (1)由图象可知,两车同时出发.等量关系有两个:3.6×(慢车的速度+快车的速度)=720,(9-3.6)×慢车的速度=3.6×快车的速度,设慢车的速度为akm/h,快车的速度为bkm/h,依此列出方程组,求解即可;
    (2)点C表示快车到达乙地,然后求出快车行驶完全程的时间从而求出点C的横坐标,再求出相遇后两辆车行驶的路程得到点C的纵坐标,从而得解;
    (3)分相遇前相距500km和相遇后相遇500km两种情况求解即可.
    【详解】
    (1)设慢车的速度为akm/h,快车的速度为bkm/h,
    根据题意,得 ,解得 ,
    故答案为80,120;
    (2)图中点C的实际意义是:快车到达乙地;
    ∵快车走完全程所需时间为720÷120=6(h),
    ∴点C的横坐标为6,
    纵坐标为(80+120)×(6﹣3.6)=480,
    即点C(6,480);
    (3)由题意,可知两车行驶的过程中有2次两车之间的距离为500km.
    即相遇前:(80+120)x=720﹣500,
    解得x=1.1,
    相遇后:∵点C(6,480),
    ∴慢车行驶20km两车之间的距离为500km,
    ∵慢车行驶20km需要的时间是=0.25(h),
    ∴x=6+0.25=6.25(h),
    故x=1.1 h或6.25 h,两车之间的距离为500km.
    考查了一次函数的应用,主要利用了路程、时间、速度三者之间的关系,(3)要分相遇前与相遇后两种情况讨论,这也是本题容易出错的地方.
    一、填空题(本大题共5个小题,每小题4分,共20分)
    19、14
    【解析】
    根据菱形的性质,先求另一条对角线的长度,再运用菱形的面积等于对角线乘积的一半求解.
    【详解】
    解:如图,在菱形ABCD中,BD=2.
    ∵菱形的周长为10,BD=2,
    ∴AB=5,BO=3,
    ∴ AC=3.
    ∴面积
    故答案为 14.
    此题考查了菱形的性质及面积求法,难度不大.
    20、1
    【解析】
    先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x1,…xn的平均数为,),则方差.
    【详解】
    解:x=1×5﹣1﹣3﹣(﹣1)﹣1=0,
    s1= [(1﹣1)1+(1﹣3)1+(1+1)1+(1﹣1)1+(1﹣0)1]=1.
    故答案为1.
    本题考查了方差的定义:一般地设n个数据,x1,x1,…xn的平均数为,),则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.
    21、y=2x+1.
    【解析】
    用待定系数法,把(﹣1,2),(0,1)分别代入y=kx+b,可求得k,b.
    【详解】
    解:把(﹣1,2),(0,1)分别代入y=kx+b得,

    解得,
    所以,y=2x+1.
    故答案为y=2x+1.
    本题考核知识点:待定系数法求一次函数解析式. 解题关键点:掌握求函数解析式的一般方法.
    22、①③④.
    【解析】
    由角平分线的定义和平行四边形的性质可证得CD=DF,进一步可证得F为AD的中点,由此可判断①;延长EF,交CD延长线于M,分别利用平行四边形的性质以及①的结论可得△AEF≌△DMF,结合直角三角形的性质可判断③;结合EF=FM,利用三角形的面积公式可判断②;在△DCF和△ECF中利用等腰三角形的性质、外角的性质及三角形内角和可得出∠DFE=3∠AEF,可判断④,综上可得答案.
    【详解】
    解:∵四边形ABCD为平行四边形,∴AD∥BC,
    ∴∠DFC=∠BCF,
    ∵CF平分∠BCD,∴∠BCF=∠DCF,
    ∴∠DFC=∠DCF,∴CD=DF,
    ∵AD=2AB, ∴AD=2CD,
    ∴AF=FD=CD,即F为AD的中点,故①正确;
    延长EF,交CD延长线于M,如图,

    ∵四边形ABCD是平行四边形, ∴AB∥CD,
    ∴∠A=∠MDF,
    ∵F为AD中点,∴AF=FD,
    又∵∠AFE=∠DFM,
    ∴△AEF≌△DMF(ASA),
    ∴FE=MF,∠AEF=∠M,
    ∵CE⊥AB,∴∠AEC=90°,
    ∴∠ECD=∠AEC=90°,
    ∵FM=EF,∴FC=FM,故③正确;
    ∵FM=EF,∴,
    ∵MC>BE,
    ∴<2,故②不正确;
    设∠FEC=x,则∠FCE=x,
    ∴∠DCF=∠DFC=90°-x,
    ∴∠EFC=180°-2x,
    ∴∠EFD=90°-x+180°-2x=270°-3x ,
    ∵∠AEF=90°-x,
    ∴∠DFE=3∠AEF,故④正确;
    综上可知正确的结论为①③④.
    故答案为①③④.
    本题以平行四边形为载体,综合考查了平行四边形的性质、全等三角形的判定和性质、直角三角形的斜边上的中线等于斜边一半的性质、三角形的内角和和等腰三角形的判定和性质,思维量大,综合性强. 解题的关键是正确作出辅助线,综合运用所学知识去分析思考;本题中见中点,延长证全等的思路是添辅助线的常用方法,值得借鉴与学习.
    23、3≤S≤1.
    【解析】
    根据坐标先求AB的长,所以△PAB的面积S的大小取决于P的纵坐标的大小,因此只要讨论当0≤m≤3时,P的纵坐标的最大值和最小值即可,根据顶点坐标D(1,4),由对称性可知:x=1时,P的纵坐标最大,此时△PAB的面积S最大;当x=3时,P的纵坐标最小,此时△PAB的面积S最小.
    【详解】
    ∵点A、B的坐标分别为(-5,0)、(-2,0),
    ∴AB=3,
    y=-2x2+4x+8=-2(x-1)2+10,
    ∴顶点D(1,10),
    由图象得:当0≤x≤1时,y随x的增大而增大,
    当1≤x≤3时,y随x的增大而减小,
    ∴当x=3时,即m=3,P的纵坐标最小,
    y=-2(3-1)2+10=2,
    此时S△PAB=×2AB=×2×3=3,
    当x=1时,即m=1,P的纵坐标最大是10,
    此时S△PAB=×10AB=×10×3=1,
    ∴当0≤m≤3时,△PAB的面积S的取值范围是3≤S≤1;
    故答案为3≤S≤1.
    本题考查了二次函数的增减性和对称性,及图形和坐标特点、三角形的面积,根据P的纵坐标确定△PAB的面积S的最大值和最小值是本题的关键.
    二、解答题(本大题共3个小题,共30分)
    24、 (1)1.5;6;(2)y=6x-27,(x>6);(3)21元.
    【解析】
    (1)根据表格中的数据,9月份属于第一种收费,5a=7.5;10月份属于第二种收费,6a+(9-6)c=27;即可求出a、c的值;(2)就是求分段函数解析式;(3)代入解析式求函数值.
    【详解】
    解:(1)由题意5a=7.5,解得a=1.5;
    6a+(9−6)c=27,解得c=6.
    ∴a=1.5,c=6
    (2)依照题意,
    当x≤6时,y=1.5x;
    当x≥6时,y=6×1.5+6×(x−6)=9+6(x−6)=6x−27,
    (3)将x=8代入y=6x−27(x>6)得y=6×8−27=21(元).
    答:该户11 月份水费是21元.
    主要考查利用一次函数的模型解决实际问题的能力.要先根据题意列出函数关系式,再代数求值.解题的关键是要分析题意根据实际意义准确的列出解析式,再把对应值代入求解.
    25、问题:甲、乙两种奖品的单价分别是多少元?
    每件甲种奖品为16元,每件乙种奖品为12元.
    【解析】
    首先提出问题,例如:甲、乙两种奖品的单价分别是多少元?然后根据本题的等量关系列出方程并求解。
    【详解】
    问题:甲、乙两种奖品的单价分别是多少元?
    解:设每件乙种奖品为x元,则每件甲种奖品为(x+4)元,列方程得:
    160x=120(x+4)
    x=12
    经检验,x=12是原分式方程的解。
    则:x+4=16
    答:每件甲种奖品为16元,每件乙种奖品为12元.
    本题考查了分式方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解。
    26、(1)a=5,b=﹣1;(2)y=x+;(3)直线L、x轴、直线y=2x+1围成的图形的面积为.
    【解析】
    (1)把A,B的坐标代入解析式即可解答
    (2)设直线L的解析式为:y=kx+b,代入A,B的坐标即可
    (3)求出直线L与x轴交于(﹣ ,0),直线y=2x+1与x轴交于(﹣ ,0),即可根据三角形面积公式进行解答
    【详解】
    (1)把A(2,a)代入y=2x+1得a=2×2+1=5,
    故a=5,
    把B(b,1)代入y=x+2得,1=b+2,
    ∴b=﹣1,
    (2)设直线L的解析式为:y=kx+b,
    把A(2,5),B(﹣1,1)代入得 ,
    解得: ,
    ∴直线l的函数表达式为y=x+ ;
    (3)∵直线L与x轴交于(﹣ ,0),直线y=2x+1与x轴交于(﹣ ,0),
    ∴直线L、x轴、直线y=2x+1围成的图形的面积=×(﹣+)×5=.
    此题考查一次函数中的直线位置关系,解题关键在于把已知点代入解析式
    题号





    总分
    得分
    批阅人
    相关试卷

    浙江省杭州市江干区实验中学2025届九上数学开学预测试题【含答案】: 这是一份浙江省杭州市江干区实验中学2025届九上数学开学预测试题【含答案】,共26页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    浙江省杭州市城区六校联考2024年九上数学开学调研模拟试题【含答案】: 这是一份浙江省杭州市城区六校联考2024年九上数学开学调研模拟试题【含答案】,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    2025届浙江省杭州滨江区六校联考数学九上开学质量跟踪监视模拟试题【含答案】: 这是一份2025届浙江省杭州滨江区六校联考数学九上开学质量跟踪监视模拟试题【含答案】,共21页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map