适用于新高考新教材2024版高考数学二轮复习中低档大题规范练1课件
展开1.(10分)(2023全国乙,文18)记Sn为等差数列{an}的前n项和,已知a2=11,S10=40.(1)求{an}的通项公式;(2)求数列{|an|}的前n项和Tn.
3.(12分)(2023新高考Ⅱ,19)某研究小组经过研究发现某种疾病的患病者与未患病者的某项医学指标有明显差异,经过大量调查,得到如下的患病者和未患病者该指标的频率分布直方图:
利用该指标制定一个检测标准,需要确定临界值c,将该指标大于c的人判定为阳性,小于或等于c的人判定为阴性.此检测标准的漏诊率是将患病者判定为阴性的概率,记为p(c);误诊率是将未患病者判定为阳性的概率,记为q(c).假设数据在组内均匀分布.以事件发生的频率作为相应事件发生的概率.(1)当漏诊率p(c)=0.5%时,求临界值c和误诊率q(c);(2)设函数f(c)=p(c)+q(c).当c∈[95,105]时,求f(c)的解析式,并求f(c)在区间[95,105]的最小值.
解 (1)当p(c)=0.5%时,由患病者频率分布直方图可得第一个小矩形面积为0.002×5=0.01,
由未患病者频率分布直方图可得q(c)=0.01×(100-97.5)+0.002×5=0.035.(2)当c∈[95,100)时,p(c)=(c-95)×0.002,q(c)=(100-c)×0.01+0.01,∴f(c)=-0.008c+0.82>0.02;当c∈[100,105]时,p(c)=5×0.002+(c-100)×0.012,q(c)=(105-c)×0.002,∴f(c)=0.01c-0.98≥0.02.
故当c=100时,f(c)取最小值,最小值为f(100)=0.02.
(1)证明:AE⊥平面ABCD;(2)设H为线段GC上一点,且三棱锥A-CDH的体积为18,求平面ACH与平面ADH夹角的余弦值.
适用于新高考新教材2024版高考数学二轮复习中低档大题规范练3课件: 这是一份适用于新高考新教材2024版高考数学二轮复习中低档大题规范练3课件,共13页。
适用于新高考新教材2024版高考数学二轮复习中低档大题规范练4课件: 这是一份适用于新高考新教材2024版高考数学二轮复习中低档大题规范练4课件,共18页。
适用于新高考新教材2024版高考数学二轮复习中低档大题规范练5课件: 这是一份适用于新高考新教材2024版高考数学二轮复习中低档大题规范练5课件,共13页。