![压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)01](http://img-preview.51jiaoxi.com/3/3/14953772/0-1698811891326/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)02](http://img-preview.51jiaoxi.com/3/3/14953772/0-1698811891368/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)03](http://img-preview.51jiaoxi.com/3/3/14953772/0-1698811891395/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)01](http://img-preview.51jiaoxi.com/3/3/14953772/1-1698811894744/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)02](http://img-preview.51jiaoxi.com/3/3/14953772/1-1698811894782/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)03](http://img-preview.51jiaoxi.com/3/3/14953772/1-1698811894804/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
压轴题型08 数学文化与创新型问题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用)
展开《普通高中数学课程标准(2017 年版 2020 年修订)》第 10 页中写道“数学文化是指数学的思想、精神、语言、方法、观点,以及它们的形成和发展;还包括数学在人类生活、科学技术、社会发展中的贡献和意义,以及与数学相关的人文活动.”由此可见,数学文化试题在高考中会长期存在
数学文化高考试题常常是以数学文化为背景命制的与核心考点相关联的题目,把数学史、数学美、数学语言、数学思维、数学学科核心索养及数学思想方法结合起来,能有效考查考生在新情境中对数学文化的鉴赏能力、对数学知识的阅读理解能力、对数学方法的迁移能力,因此备受命题者的青睐
近三年的数学文化高考试题有以下特征
1)从题型来看,多为选择题与填空题(选择题最多);
2)从知识点的分布来看,多涉及统计与概率、立体几何、数列、函数与方程、不等式;
3)从题目的背景来看,包括数学史、世界名题、浓厚的时代气息等。
EQ \\ac(○,热) EQ \\ac(○,点) EQ \\ac(○,题) EQ \\ac(○,型)1 数学史为背景的数学文化题
EQ \\ac(○,热) EQ \\ac(○,点) EQ \\ac(○,题) EQ \\ac(○,型)2 来源于生活的数学文化创新题
一、单选题
1.围棋起源于中国,据先秦典籍《世本》记载:“尧造围棋,丹朱善之”,至今已有四千多年历史围棋不仅能抒发意境、陶冶情操、修身养性、生慧增智,而且还与天象易理、兵法策路、治国安邦等相关联,蕴含着中华文化的丰富内涵.在某次国际围棋比赛最后,中国队有两名选手a,b,日本队有一名选手c,韩国队有一名选手d,规定a与c对阵,b与d对阵,两场比赛的胜者争夺冠军,根据以往战绩,四位选手之间相互获胜的概率如下:
则最终中国队获得冠军的概率为( )
A.0.24B.0.328C.0.672D.0.76
2.“阿基米德多面体”也称为半正多面体,是由边数不全相同的正多边形围成的多面体,它体现了数学的对称美.如图是以一正方体的各条棱的中点为顶点的多面体,这是一个有八个面为正三角形,六个面为正方形的“阿基米德多面体”.若该多面体的棱长为1,则经过该多面体的各个顶点的球的表面积为( )
A.8πB.4πC.D.2π
3.足球被誉为“世界第一运动”,它是全球体育界最具影响力的单项体育运动,足球的表面可看成是由正二十面体用平面截角的方法形成的.即用如图1所示的正二十面体,从每个顶点的棱边的处将其顶角截去,截去个顶角后剩下的如图2所示的结构就是足球的表面结构.已知正二十面体是由个边长为的正三角形围成的封闭几何体,则如图2所示的几何体中所有棱的边数为( ).
A.B.
C.D.
4.如图甲(左),圣索菲亚教堂是哈尔滨的标志性建筑,其中央主体建筑集球、圆柱、棱柱于一体,极具对称之美.为了估算索菲亚教堂的高度,在索菲亚教堂的正东方向找到一座建筑物,高约为40,如图乙(右),在它们之间的地面上的点(三点共线)处测得楼顶、教堂顶的仰角分别是和,在楼顶处测得塔顶的仰角为,则估算索菲亚教堂的高度约为( )
A.50B.55C.60D.70
5.南水北调工程缓解了北方一些地区水资源短缺问题,其中一部分水蓄入某水库.已知该水库水位为海拔时,相应水面的面积为;水位为海拔时,相应水面的面积为,将该水库在这两个水位间的形状看作一个棱台,则该水库水位从海拔上升到时,增加的水量约为()( )
A.B.C.D.
6.在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是( )
A.当,时,二氧化碳处于液态
B.当,时,二氧化碳处于气态
C.当,时,二氧化碳处于超临界状态
D.当,时,二氧化碳处于超临界状态
7.北斗三号全球卫星导航系统是我国航天事业的重要成果.在卫星导航系统中,地球静止同步卫星的轨道位于地球赤道所在平面,轨道高度为(轨道高度是指卫星到地球表面的距离).将地球看作是一个球心为O,半径r为的球,其上点A的纬度是指与赤道平面所成角的度数.地球表面上能直接观测到一颗地球静止同步轨道卫星点的纬度最大值为,记卫星信号覆盖地球表面的表面积为(单位:),则S占地球表面积的百分比约为( )
A.26%B.34%C.42%D.50%
8.嫦娥二号卫星在完成探月任务后,继续进行深空探测,成为我国第一颗环绕太阳飞行的人造行星,为研究嫦娥二号绕日周期与地球绕日周期的比值,用到数列:,,,…,依此类推,其中.则( )
A.B.C.D.
9.为测量两塔塔尖之间的距离,某数学建模活动小组构建了如图所示的几何模型.若平面,平面,,,,,,则塔尖之间的距离为( )
A.B.C.D.
二、多选题
10.某地举办数学建模大赛,本次大赛的冠军奖杯由一个铜球和一个托盘组成,如图①,已知球的表面积为16,托盘由边长为8的等边三角形铜片沿各边中点的连线垂直向上折叠面成,如图②,则下列结论正确的是( )
A.直线AD与平面DEF所成的角为
B.经过三个顶点A,B,C的球的截面圆的面积为
C.异面直线AD与CF所成角的余弦值为
D.球上的点到底面DEF的最大距离为
三、填空题
11.手工课可以提高学生的动手能力、反应能力、创造力,使学生在德、智、体、美、劳各方面得到全面发展,某小学生在一次手工课上制作了一座漂亮的房子模型,它可近似地看成是一个直三棱柱和一个长方体的组合图形,其直观图如图所示,,,P,Q,M,N分别是棱AB,,,的中点,则异面直线PQ与MN所成角的余弦值是______.
12.发现问题是数学建模的第一步,对我们中学生来说养成发现问题并将问题记录下来的习惯相当重要.相传2500多年前,古希腊数学家毕达哥拉斯有一次在朋友家作客时,发现朋友家用砖铺成的地面的图案(如图)反映了直角三角形三边的某种数量关系,他将自己的发现记录下来,经过后续研究发现了勾股定理.请你也来仔细观察,观察图中的多边形面积,然后用文字写出你的一个关于多边形面积的发现:________(提示:答案可以是疑问句,也可以陈述句,答案不唯一).
13.如图,某校学生在开展数学建模活动时,用一块边长为的正方形铝板制作一个无底面的正棱锥(侧面为等腰三角形,底面为正边形)道具,他们以正方形的儿何中心为田心,为半径画圆,仿照我国古代数学家刘徽的割圆术裁剪出份,再从中取份,并以O为正棱锥的顶点,且落在底面的射影为正边形的几何中心,侧面等腰三角形的顶角为,当时,设正棱锥的体积为,则的最大值为___________.
四、双空题
14.某校学生在研究民间剪纸艺术时,发现剪纸时经常会沿纸的某条对称轴把纸对折,规格为的长方形纸,对折1次共可以得到,两种规格的图形,它们的面积之和,对折2次共可以得到,,三种规格的图形,它们的面积之和,以此类推,则对折4次共可以得到不同规格图形的种数为______;如果对折次,那么______.
15.某校数学建模社团对校外一座山的高度h(单位:)进行测量,方案如下:如图,社团同学朝山沿直线行进,在前后相距a米两处分别观测山顶的仰角和(),多次测量相关数据取平均值后代入数学模型求解山高,这个社团利用到的数学模型___________;多次测量取平均值是中学物理测量中常用的减小误差的方法之一,对物理量进行n次测量,其误差近似满足,为使误差在的概率不小于0.9973,至少要测量___________次.参考数据:若占,则.
a
b
c
d
a获胜概率
/
0.5
0.6
0.8
b获胜概率
0.5
/
0.5
0.6
c获胜概率
0.4
0.5
/
0.4
d获胜概率
0.2
0.4
0.6
/
压轴题型11 圆锥曲线压轴题的处理策略-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用): 这是一份压轴题型11 圆锥曲线压轴题的处理策略-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用),共36页。试卷主要包含了如图,已知抛物线C等内容,欢迎下载使用。
压轴题型10 导数压轴大题的处理策略-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用): 这是一份压轴题型10 导数压轴大题的处理策略-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用),共36页。试卷主要包含了已知函数有两个零点,已知.,已知函数,.,已知函数.,已知,是自然对数的底数,函数等内容,欢迎下载使用。
压轴题型09 立体几何中的压轴小题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用): 这是一份压轴题型09 立体几何中的压轴小题-2024年高考数学二轮冲刺之压轴题专项训练(新高考专用),共36页。试卷主要包含了多选题,填空题等内容,欢迎下载使用。