|试卷下载
终身会员
搜索
    上传资料 赚现金
    2024年中考数学复习热搜题速递之三角形
    立即下载
    加入资料篮
    2024年中考数学复习热搜题速递之三角形01
    2024年中考数学复习热搜题速递之三角形02
    2024年中考数学复习热搜题速递之三角形03
    还剩29页未读, 继续阅读
    下载需要20学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2024年中考数学复习热搜题速递之三角形

    展开
    这是一份2024年中考数学复习热搜题速递之三角形,共32页。

    2024年中考数学复习热搜题速递之三角形(2023年7月)
    一.选择题(共10小题)
    1.(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是(  )
    A. B.
    C. D.
    2.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(  )

    A.3-1 B.3+1 C.5-1 D.5+1
    3.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是(  )

    A.2.5 B.5 C.322 D.2
    4.(2015•遂宁)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为(  )

    A.1cm B.2cm C.3cm D.4cm
    5.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是(  )
    A.4.8 B.4.8或3.8 C.3.8 D.5
    6.(2023春•南岗区校级月考)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为(  )

    A.3cm2 B.4cm2 C.6cm2 D.12cm2
    7.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  )

    A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
    8.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(  )

    A.8 B.6 C.4 D.2
    9.(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于(  )

    A.10 B.7 C.5 D.4
    10.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形的个数有(  )

    A.1 B.2 C.3 D.4
    二.填空题(共5小题)
    11.(2023春•长沙期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为    .

    12.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为   .

    13.(2021秋•阳新县期末)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=   .

    14.(2012•庆阳)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=   .

    15.(2022秋•东昌府区校级期末)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=   .

    三.解答题(共5小题)
    16.(2023•岱岳区校级一模)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
    (1)求证:△ABC≌△ADE;
    (2)求∠FAE的度数;
    (3)求证:CD=2BF+DE.

    17.(2023春•侯马市期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.

    18.(2012•昌平区模拟)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD;
    (2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?
    (3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

    19.(2015•于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
    (1)如果AB=AC,∠BAC=90°,
    ①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为   ,线段CF、BD的数量关系为   ;
    ②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
    (2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.

    20.(2023•宜丰县校级开学)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
    (1)求证:△DEF是等腰三角形;
    (2)当∠A=40°时,求∠DEF的度数.


    2024年中考数学复习热搜题速递之三角形(2023年7月)
    参考答案与试题解析
    一.选择题(共10小题)
    1.(2015•长沙)如图,过△ABC的顶点A,作BC边上的高,以下作法正确的是(  )
    A. B.
    C. D.
    【考点】三角形的角平分线、中线和高.菁优网版权所有
    【答案】A
    【分析】根据三角形高线的定义:过三角形的顶点向对边引垂线,顶点和垂足之间的线段叫做三角形的高线解答.
    【解答】解:为△ABC中BC边上的高的是A选项.
    故选:A.
    【点评】本题考查了三角形的角平分线、中线、高线,熟记高线的定义是解题的关键.
    2.(2015•大连)如图,在△ABC中,∠C=90°,AC=2,点D在BC上,∠ADC=2∠B,AD=5,则BC的长为(  )

    A.3-1 B.3+1 C.5-1 D.5+1
    【考点】勾股定理;等腰三角形的判定与性质.菁优网版权所有
    【专题】压轴题.
    【答案】D
    【分析】根据∠ADC=2∠B,∠ADC=∠B+∠BAD判断出DB=DA,根据勾股定理求出DC的长,从而求出BC的长.
    【解答】解:∵∠ADC=2∠B,∠ADC=∠B+∠BAD,
    ∴∠B=∠DAB,
    ∴DB=DA=5,
    在Rt△ADC中,
    DC=AD2-AC2=(5)2-22=1;
    ∴BC=5+1.
    故选:D.
    【点评】本题主要考查了勾股定理,同时涉及三角形外角的性质,二者结合,是一道好题.
    3.(2014•宁波)如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是(  )

    A.2.5 B.5 C.322 D.2
    【考点】直角三角形斜边上的中线;勾股定理.菁优网版权所有
    【专题】几何图形问题.
    【答案】B
    【分析】连接AC、CF,根据正方形性质求出AC、CF,∠ACD=∠GCF=45°,再求出∠ACF=90°,然后利用勾股定理列式求出AF,再根据直角三角形斜边上的中线等于斜边的一半解答即可.
    【解答】解:如图,连接AC、CF,
    ∵正方形ABCD和正方形CEFG中,BC=1,CE=3,
    ∴AC=2,CF=32,
    ∠ACD=∠GCF=45°,
    ∴∠ACF=90°,
    由勾股定理得,AF=AC2+CF2=(2)2+(32)2=25,
    ∵H是AF的中点,
    ∴CH=12AF=12×25=5.
    故选:B.

    【点评】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,正方形的性质,勾股定理,熟记各性质并作辅助线构造出直角三角形是解题的关键.
    4.(2015•遂宁)如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为(  )

    A.1cm B.2cm C.3cm D.4cm
    【考点】线段垂直平分线的性质.菁优网版权所有
    【答案】C
    【分析】首先根据MN是线段AB的垂直平分线,可得AN=BN,然后根据△BCN的周长是7cm,以及AN+NC=AC,求出BC的长为多少即可.
    【解答】解:∵MN是线段AB的垂直平分线,
    ∴AN=BN,
    ∵△BCN的周长是7cm,
    ∴BN+NC+BC=7(cm),
    ∴AN+NC+BC=7(cm),
    ∵AN+NC=AC,
    ∴AC+BC=7(cm),
    又∵AC=4cm,
    ∴BC=7﹣4=3(cm).
    故选:C.
    【点评】此题主要考查了线段垂直平分线的性质和应用,要熟练掌握,解答此题的关键是要明确:①垂直平分线垂直且平分其所在线段.②垂直平分线上任意一点,到线段两端点的距离相等.③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
    5.(2015•黑龙江)△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是(  )
    A.4.8 B.4.8或3.8 C.3.8 D.5
    【考点】勾股定理;等腰三角形的性质.菁优网版权所有
    【专题】动点型.
    【答案】A
    【分析】过A点作AF⊥BC于F,连接AP,根据等腰三角形三线合一的性质和勾股定理可得AF的长,由图形得S△ABC=S△ABP+S△ACP,代入数值,解答出即可.
    【解答】解:过A点作AF⊥BC于F,连接AP,
    ∵△ABC中,AB=AC=5,BC=8,
    ∴BF=4,
    ∴△ABF中,AF=AB2-BF2=3,
    ∴12×8×3=12×5×PD+12×5×PE,
    12=12×5×(PD+PE)
    PD+PE=4.8.
    故选:A.

    【点评】本题主要考查了勾股定理、等腰三角形的性质,解答时注意,将一个三角形的面积转化成两个三角形的面积和;体现了转化思想.
    6.(2023春•南岗区校级月考)已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为(  )

    A.3cm2 B.4cm2 C.6cm2 D.12cm2
    【考点】勾股定理;翻折变换(折叠问题).菁优网版权所有
    【答案】C
    【分析】根据折叠的条件可得:BE=DE,在直角△ABE中,利用勾股定理就可以求解.
    【解答】解:将此长方形折叠,使点B与点D重合,∴BE=ED.
    ∵AD=9cm=AE+DE=AE+BE.
    ∴BE=9﹣AE,
    根据勾股定理可知AB2+AE2=BE2.
    解得AE=4.
    ∴△ABE的面积为3×4÷2=6.故选:C.
    【点评】本题考查了利用勾股定理解直角三角形的能力即:直角三角形两直角边的平方和等于斜边的平方.
    7.(2018•安顺)如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD(  )

    A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD
    【考点】全等三角形的判定.菁优网版权所有
    【答案】D
    【分析】欲使△ABE≌△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.
    【解答】解:∵AB=AC,∠A为公共角,
    A、如添加∠B=∠C,利用ASA即可证明△ABE≌△ACD;
    B、如添AD=AE,利用SAS即可证明△ABE≌△ACD;
    C、如添BD=CE,等量关系可得AD=AE,利用SAS即可证明△ABE≌△ACD;
    D、如添BE=CD,因为SSA,不能证明△ABE≌△ACD,所以此选项不能作为添加的条件.
    故选:D.
    【点评】此题主要考查学生对全等三角形判定定理的理解和掌握,此类添加条件题,要求学生应熟练掌握全等三角形的判定定理.
    8.(2016•湖州)如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是(  )

    A.8 B.6 C.4 D.2
    【考点】角平分线的性质.菁优网版权所有
    【答案】C
    【分析】过点P作PE⊥BC于E,根据角平分线上的点到角的两边的距离相等可得PA=PE,PD=PE,那么PE=PA=PD,又AD=8,进而求出PE=4.
    【解答】解:过点P作PE⊥BC于E,
    ∵AB∥CD,PA⊥AB,
    ∴PD⊥CD,
    ∵BP和CP分别平分∠ABC和∠DCB,
    ∴PA=PE,PD=PE,
    ∴PE=PA=PD,
    ∵PA+PD=AD=8,
    ∴PA=PD=4,
    ∴PE=4.
    故选:C.

    【点评】本题考查了角平分线上的点到角的两边的距离相等的性质,熟记性质并作辅助线是解题的关键.
    9.(2015•湖州)如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于(  )

    A.10 B.7 C.5 D.4
    【考点】角平分线的性质.菁优网版权所有
    【答案】C
    【分析】作EF⊥BC于F,根据角平分线的性质求得EF=DE=2,然后根据三角形面积公式求得即可.
    【解答】解:作EF⊥BC于F,

    ∵BE平分∠ABC,ED⊥AB,EF⊥BC,
    ∴EF=DE=2,
    ∴S△BCE=12BC•EF=12×5×2=5,
    故选:C.
    【点评】本题考查了角的平分线的性质以及三角形的面积,作出辅助线求得三角形的高是解题的关键.
    10.(2016•株洲)如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形的个数有(  )

    A.1 B.2 C.3 D.4
    【考点】勾股定理.菁优网版权所有
    【专题】计算题;推理填空题.
    【答案】D
    【分析】根据直角三角形a、b、c为边,应用勾股定理,可得a2+b2=c2.
    (1)第一个图形中,首先根据等边三角形的面积的求法,表示出3个三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.
    (2)第二个图形中,首先根据圆的面积的求法,表示出3个半圆的面积;然后根据a2+b2=c2,可得S1+S2=S3.
    (3)第三个图形中,首先根据等腰直角三角形的面积的求法,表示出3个等腰直角三角形的面积;然后根据a2+b2=c2,可得S1+S2=S3.
    (4)第四个图形中,首先根据正方形的面积的求法,表示出3个正方形的面积;然后根据a2+b2=c2,可得S1+S2=S3.
    【解答】解:(1)S1=34a2,S2=34b2,S3=34c2,
    ∵a2+b2=c2,
    ∴34a2+34b2=34c2,
    ∴S1+S2=S3.

    (2)S1=π8a2,S2=π8b2,S3=π8c2,
    ∵a2+b2=c2,
    ∴π8a2+π8b2=π8c2,
    ∴S1+S2=S3.

    (3)S1=14a2,S2=14b2,S3=14c2,
    ∵a2+b2=c2,
    ∴14a2+14b2=14c2,
    ∴S1+S2=S3.

    (4)S1=a2,S2=b2,S3=c2,
    ∵a2+b2=c2,
    ∴S1+S2=S3.
    综上,可得
    面积关系满足S1+S2=S3的图形有4个.
    故选:D.
    【点评】(1)此题主要考查了勾股定理的应用,要熟练掌握,解答此题的关键是要明确:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    (2)此题还考查了等腰直角三角形、等边三角形、圆以及正方形的面积的求法,要熟练掌握.
    二.填空题(共5小题)
    11.(2023春•长沙期末)如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为  10 .

    【考点】勾股定理;全等三角形的判定与性质.菁优网版权所有
    【专题】计算题.
    【答案】见试题解答内容
    【分析】因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB﹣BF.
    【解答】解:易证△AFD′≌△CFB,
    ∴D′F=BF,
    设D′F=x,则AF=8﹣x,
    在Rt△AFD′中,(8﹣x)2=x2+42,
    解之得:x=3,
    ∴AF=AB﹣FB=8﹣3=5,
    ∴S△AFC=12•AF•BC=10.
    故答案为:10.
    【点评】本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.
    12.(2015•广州)如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 3 .

    【考点】三角形中位线定理;勾股定理.菁优网版权所有
    【专题】压轴题;动点型.
    【答案】见试题解答内容
    【分析】根据三角形的中位线定理得出EF=12DN,从而可知DN最大时,EF最大,因为N与B重合时DN最大,此时根据勾股定理求得DN=DB=6,从而求得EF的最大值为3.
    【解答】解:∵ED=EM,MF=FN,
    ∴EF=12DN,
    ∴DN最大时,EF最大,
    ∵N与B重合时DN最大,
    此时DN=DB=AD2+AB2=6,
    ∴EF的最大值为3.
    故答案为3.
    【点评】本题考查了三角形中位线定理,勾股定理的应用,熟练掌握定理是解题的关键.
    13.(2021秋•阳新县期末)如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD= 45° .

    【考点】三角形的角平分线、中线和高.菁优网版权所有
    【专题】常规题型.
    【答案】见试题解答内容
    【分析】延长CH交AB于点F,锐角三角形三条高交于一点,所以CF⊥AB,再根据三角形内角和定理得出答案.
    【解答】解:延长CH交AB于点F,
    在△ABC中,三边的高交于一点,所以CF⊥AB,
    ∵∠BAC=75°,且CF⊥AB,
    ∴∠ACF=15°,
    ∵∠ACB=60°,
    ∴∠BCF=45°
    在△CDH中,三内角之和为180°,
    ∴∠CHD=45°,
    故答案为∠CHD=45°.

    【点评】考查三角形中,三条边的高交于一点,且内角和为180°.
    14.(2012•庆阳)在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= 4 .

    【考点】勾股定理;全等三角形的判定与性质.菁优网版权所有
    【专题】规律型.
    【答案】见试题解答内容
    【分析】运用勾股定理可知,每两个相邻的正方形面积和都等于中间斜放的正方形面积,据此即可解答.
    【解答】
    解:观察发现,
    ∵AB=BE,∠ACB=∠BDE=90°,
    ∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,
    ∴∠BAC=∠EBD,
    ∴△ABC≌△BDE(AAS),
    ∴BC=ED,
    ∵AB2=AC2+BC2,
    ∴AB2=AC2+ED2=S1+S2,
    即S1+S2=1,
    同理S3+S4=3.
    则S1+S2+S3+S4=1+3=4.
    故答案为:4.
    【点评】运用了全等三角形的判定以及性质、勾股定理.注意发现两个小正方形的面积和正好是之间的正方形的面积.
    15.(2022秋•东昌府区校级期末)如图所示,AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3= 55° .

    【考点】全等三角形的判定与性质.菁优网版权所有
    【答案】见试题解答内容
    【分析】求出∠BAD=∠EAC,证△BAD≌△CAE,推出∠2=∠ABD=30°,根据三角形的外角性质求出即可.
    【解答】解:∵∠BAC=∠DAE,
    ∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,
    ∴∠1=∠EAC,
    在△BAD和△CAE中,
    AB=AC∠BAD=∠CAEAD=AE
    ∴△BAD≌△CAE(SAS),
    ∴∠2=∠ABD=30°,
    ∵∠1=25°,
    ∴∠3=∠1+∠ABD=25°+30°=55°,
    故答案为:55°.
    【点评】本题考查了全等三角形的性质和判定,三角形的外角性质的应用,解此题的关键是推出△BAD≌△CAE.
    三.解答题(共5小题)
    16.(2023•岱岳区校级一模)如图,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足为F.
    (1)求证:△ABC≌△ADE;
    (2)求∠FAE的度数;
    (3)求证:CD=2BF+DE.

    【考点】全等三角形的判定与性质.菁优网版权所有
    【专题】证明题.
    【答案】见试题解答内容
    【分析】(1)根据题意和题目中的条件可以找出△ABC≌△ADE的条件;
    (2)根据(1)中的结论和等腰直角三角形的定义可以得到∠FAE的度数;
    (3)根据题意和三角形全等的知识,作出合适的辅助线即可证明结论成立.
    【解答】证明:(1)∵∠BAD=∠CAE=90°,
    ∴∠BAC+∠CAD=90°,∠CAD+∠DAE=90°,
    ∴∠BAC=∠DAE,
    在△BAC和△DAE中,
    AB=AD∠BAC=∠DAEAC=AE,
    ∴△BAC≌△DAE(SAS);
    (2)∵∠CAE=90°,AC=AE,
    ∴∠E=45°,
    由(1)知△BAC≌△DAE,
    ∴∠BCA=∠E=45°,
    ∵AF⊥BC,
    ∴∠CFA=90°,
    ∴∠CAF=45°,
    ∴∠FAE=∠FAC+∠CAE=45°+90°=135°;
    (3)延长BF到G,使得FG=FB,
    ∵AF⊥BG,
    ∴∠AFG=∠AFB=90°,
    在△AFB和△AFG中,
    BF=GF∠AFB=∠AFGAF=AF,
    ∴△AFB≌△AFG(SAS),
    ∴AB=AG,∠ABF=∠G,
    ∵△BAC≌△DAE,
    ∴AB=AD,∠CBA=∠EDA,CB=ED,
    ∴AG=AD,∠ABF=∠CDA,
    ∴∠G=∠CDA,
    ∵∠GCA=∠DCA=45°,
    在△CGA和△CDA中,
    ∠GCA=∠DCA∠CGA=∠CDAAG=AD,
    ∴△CGA≌△CDA(AAS),
    ∴CG=CD,
    ∵CG=CB+BF+FG=CB+2BF=DE+2BF,
    ∴CD=2BF+DE.

    【点评】本题考查全等三角形的判定与性质,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.
    17.(2023春•侯马市期末)如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.

    【考点】三角形的角平分线、中线和高.菁优网版权所有
    【答案】见试题解答内容
    【分析】先利用三角形内角和定理可求∠ABC,在直角三角形ACD中,易求∠DAC;再根据角平分线定义可求∠CBF、∠EAF,可得∠DAE的度数;然后利用三角形外角性质,可先求∠AFB,再次利用三角形外角性质,容易求出∠BOA.
    【解答】解:∵∠CAB=50°,∠C=60°
    ∴∠ABC=180°﹣50°﹣60°=70°,
    又∵AD是高,
    ∴∠ADC=90°,
    ∴∠DAC=180°﹣90°﹣∠C=30°,
    ∵AE、BF是角平分线,
    ∴∠CBF=∠ABF=35°,∠EAF=25°,
    ∴∠DAE=∠DAC﹣∠EAF=5°,
    ∠AFB=∠C+∠CBF=60°+35°=95°,
    ∴∠BOA=∠EAF+∠AFB=25°+95°=120°,
    ∴∠DAC=30°,∠BOA=120°.
    故∠DAE=5°,∠BOA=120°.
    【点评】本题考查了三角形内角和定理、角平分线定义、三角形外角性质.关键是利用角平分线的性质解出∠EAF、∠CBF,再运用三角形外角性质求出∠AFB.
    18.(2012•昌平区模拟)(1)如图1,在四边形ABCD中,AB=AD,∠B=∠D=90°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD.求证:EF=BE+FD;
    (2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是边BC、CD上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?
    (3)如图3,在四边形ABCD中,AB=AD,∠B+∠ADC=180°,E、F分别是边BC、CD延长线上的点,且∠EAF=12∠BAD,(1)中的结论是否仍然成立?若成立,请证明;若不成立,请写出它们之间的数量关系,并证明.

    【考点】全等三角形的判定与性质.菁优网版权所有
    【专题】证明题;压轴题;探究型.
    【答案】见试题解答内容
    【分析】(1)可通过构建全等三角形来实现线段间的转换.延长EB到G,使BG=DF,连接AG.目的就是要证明三角形AGE和三角形AEF全等将EF转换成GE,那么这样EF=BE+DF了,于是证明两组三角形全等就是解题的关键.三角形ABE和AEF中,只有一条公共边AE,我们就要通过其他的全等三角形来实现,在三角形ABG和AFD中,已知了一组直角,BG=DF,AB=AD,因此两三角形全等,那么AG=AF,∠1=∠2,那么∠1+∠3=∠2+∠3=∠EAF=12∠BAD.由此就构成了三角形ABE和AEF全等的所有条件(SAS),那么就能得出EF=GE了.
    (2)思路和作辅助线的方法与(1)完全一样,只不过证明三角形ABG和ADF全等中,证明∠ABG=∠ADF时,用到的等角的补角相等,其他的都一样.因此与(1)的结果完全一样.
    (3)按照(1)的思路,我们应该通过全等三角形来实现相等线段的转换.就应该在BE上截取BG,使BG=DF,连接AG.根据(1)的证法,我们可得出DF=BG,GE=EF,那么EF=GE=BE﹣BG=BE﹣DF.所以(1)的结论在(3)的条件下是不成立的.
    【解答】证明:(1)延长EB到G,使BG=DF,连接AG.

    ∵∠ABG=∠ABC=∠D=90°,AB=AD,
    ∴△ABG≌△ADF.
    ∴AG=AF,∠1=∠2.
    ∴∠1+∠3=∠2+∠3=∠EAF=12∠BAD.
    ∴∠GAE=∠EAF.
    又∵AE=AE,
    ∴△AEG≌△AEF.
    ∴EG=EF.
    ∵EG=BE+BG.
    ∴EF=BE+FD

    (2)(1)中的结论EF=BE+FD仍然成立.

    (3)结论EF=BE+FD不成立,应当是EF=BE﹣FD.
    证明:在BE上截取BG,使BG=DF,连接AG.

    ∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,
    ∴∠B=∠ADF.
    ∵AB=AD,
    ∴△ABG≌△ADF.
    ∴∠BAG=∠DAF,AG=AF.
    ∴∠BAG+∠EAD=∠DAF+∠EAD
    =∠EAF=12∠BAD.
    ∴∠GAE=∠EAF.
    ∵AE=AE,
    ∴△AEG≌△AEF.
    ∴EG=EF
    ∵EG=BE﹣BG
    ∴EF=BE﹣FD.
    【点评】本题考查了三角形全等的判定和性质;本题中通过全等三角形来实现线段的转换是解题的关键,没有明确的全等三角形时,要通过辅助线来构建与已知和所求条件相关联全等三角形.
    19.(2015•于洪区一模)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
    (1)如果AB=AC,∠BAC=90°,
    ①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为 垂直 ,线段CF、BD的数量关系为 相等 ;
    ②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立,并说明理由;
    (2)如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.

    【考点】全等三角形的判定与性质.菁优网版权所有
    【专题】压轴题;开放型.
    【答案】见试题解答内容
    【分析】(1)当点D在BC的延长线上时①的结论仍成立.由正方形ADEF的性质可推出△DAB≌△FAC,所以CF=BD,∠ACF=∠ABD.结合∠BAC=90°,AB=AC,得到∠BCF=∠ACB+∠ACF=90°.即CF⊥BD.
    (2)当∠ACB=45°时,过点A作AG⊥AC交CB的延长线于点G,则∠GAC=90°,可推出∠ACB=∠AGC,所以AC=AG,由(1)①可知CF⊥BD.
    【解答】证明:(1)①正方形ADEF中,AD=AF,
    ∵∠BAC=∠DAF=90°,
    ∴∠BAD=∠CAF,
    又∵AB=AC,
    ∴△DAB≌△FAC,
    ∴CF=BD,∠B=∠ACF,
    ∴∠ACB+∠ACF=90°,即CF⊥BD.
    ②当点D在BC的延长线上时①的结论仍成立.
    由正方形ADEF得AD=AF,∠DAF=90度.
    ∵∠BAC=90°,
    ∴∠DAF=∠BAC,
    ∴∠DAB=∠FAC,
    又∵AB=AC,
    ∴△DAB≌△FAC,
    ∴CF=BD,∠ACF=∠ABD.
    ∵∠BAC=90°,AB=AC,
    ∴∠ABC=45°,
    ∴∠ACF=45°,
    ∴∠BCF=∠ACB+∠ACF=90度.
    即CF⊥BD.

    (2)当∠ACB=45°时,CF⊥BD(如图).
    理由:过点A作AG⊥AC交CB的延长线于点G,
    则∠GAC=90°,
    ∵∠ACB=45°,∠AGC=90°﹣∠ACB,
    ∴∠AGC=90°﹣45°=45°,
    ∴∠ACB=∠AGC=45°,
    ∴AC=AG,
    ∵∠DAG=∠FAC(同角的余角相等),AD=AF,
    ∴△GAD≌△CAF,
    ∴∠ACF=∠AGC=45°,
    ∠BCF=∠ACB+∠ACF=45°+45°=90°,即CF⊥BC.

    【点评】本题考查三角形全等的判定和直角三角形的判定,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
    20.(2023•宜丰县校级开学)如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
    (1)求证:△DEF是等腰三角形;
    (2)当∠A=40°时,求∠DEF的度数.

    【考点】等腰三角形的判定与性质.菁优网版权所有
    【专题】计算题;证明题.
    【答案】见试题解答内容
    【分析】(1)由AB=AC,∠ABC=∠ACB,BE=CF,BD=CE.利用边角边定理证明△DBE≌△ECF,然后即可求证△DEF是等腰三角形.
    (2)根据∠A=40°可求出∠ABC=∠ACB=70°根据△DBE≌△ECF,利用三角形内角和定理即可求出∠DEF的度数.
    【解答】证明:∵AB=AC,
    ∴∠ABC=∠ACB,
    在△DBE和△ECF中
    BE=CF∠ABC=∠ACBBD=CE,
    ∴△DBE≌△ECF,
    ∴DE=EF,
    ∴△DEF是等腰三角形;

    (2)∵△DBE≌△ECF,
    ∴∠1=∠3,∠2=∠4,
    ∵∠A+∠B+∠C=180°,
    ∴∠B=12(180°﹣40°)=70°
    ∴∠1+∠2=110°
    ∴∠3+∠2=110°
    ∴∠DEF=70°

    【点评】此题主要考查学生对等腰三角形的判定与性质的理解和掌握,此题主要应用了三角形内角和定理和平角是180°,因此有一定的难度,属于中档题.

    考点卡片
    1.三角形的角平分线、中线和高
    (1)从三角形的一个顶点向底边作垂线,垂足与顶点之间的线段叫做三角形的高.
    (2)三角形一个内角的平分线与这个内角的对边交于一点,则这个内角的顶点与所交的点间的线段叫做三角形的角平分线.
    (3)三角形一边的中点与此边所对顶点的连线叫做三角形的中线.
    (4)三角形有三条中线,有三条高线,有三条角平分线,它们都是线段.
    (5)锐角三角形的三条高在三角形内部,相交于三角形内一点,直角三角形有两条高与直角边重合,另一条高在三角形内部,它们的交点是直角顶点;钝角三角形有两条高在三角形外部,一条高在三角形内部,三条高所在直线相交于三角形外一点.
    2.全等三角形的判定
    (1)判定定理1:SSS﹣﹣三条边分别对应相等的两个三角形全等.
    (2)判定定理2:SAS﹣﹣两边及其夹角分别对应相等的两个三角形全等.
    (3)判定定理3:ASA﹣﹣两角及其夹边分别对应相等的两个三角形全等.
    (4)判定定理4:AAS﹣﹣两角及其中一个角的对边对应相等的两个三角形全等.
    (5)判定定理5:HL﹣﹣斜边与直角边对应相等的两个直角三角形全等.
    方法指引:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.
    3.全等三角形的判定与性质
    (1)全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.
    (2)在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形.
    4.角平分线的性质
    角平分线的性质:角的平分线上的点到角的两边的距离相等.
    注意:①这里的距离是指点到角的两边垂线段的长;②该性质可以独立作为证明两条线段相等的依据,有时不必证明全等;③使用该结论的前提条件是图中有角平分线,有垂直角平分线的性质语言:如图,∵C在∠AOB的平分线上,CD⊥OA,CE⊥OB∴CD=CE

    5.线段垂直平分线的性质
    (1)定义:经过某一条线段的中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线(中垂线)垂直平分线,简称“中垂线”.
    (2)性质:①垂直平分线垂直且平分其所在线段.    ②垂直平分线上任意一点,到线段两端点的距离相等.    ③三角形三条边的垂直平分线相交于一点,该点叫外心,并且这一点到三个顶点的距离相等.
    6.等腰三角形的性质
    (1)等腰三角形的概念
    有两条边相等的三角形叫做等腰三角形.
    (2)等腰三角形的性质
    ①等腰三角形的两腰相等
    ②等腰三角形的两个底角相等.【简称:等边对等角】
    ③等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合.【三线合一】
    (3)在①等腰;②底边上的高;③底边上的中线;④顶角平分线.以上四个元素中,从中任意取出两个元素当成条件,就可以得到另外两个元素为结论.
    7.等腰三角形的判定与性质
    1、等腰三角形提供了好多相等的线段和相等的角,判定三角形是等腰三角形是证明线段相等、角相等的重要手段.
    2、在等腰三角形有关问题中,会遇到一些添加辅助线的问题,其顶角平分线、底边上的高、底边上的中线是常见的辅助线,虽然“三线合一”,但添加辅助线时,有时作哪条线都可以,有时不同的做法引起解决问题的复杂程度不同,需要具体问题具体分析.
    3、等腰三角形性质问题都可以利用三角形全等来解决,但要注意纠正不顾条件,一概依赖全等三角形的思维定势,凡可以直接利用等腰三角形的问题,应当优先选择简便方法来解决.
    8.直角三角形斜边上的中线
    (1)性质:在直角三角形中,斜边上的中线等于斜边的一半.(即直角三角形的外心位于斜边的中点)
    (2)定理:一个三角形,如果一边上的中线等于这条边的一半,那么这个三角形是以这条边为斜边的直角三角形.
    该定理可以用来判定直角三角形.
    9.勾股定理
    (1)勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.
    如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.
    (2)勾股定理应用的前提条件是在直角三角形中.
    (3)勾股定理公式a2+b2=c2 的变形有:a=c2-b2,b=c2-a2及c=a2+b2.
    (4)由于a2+b2=c2>a2,所以c>a,同理c>b,即直角三角形的斜边大于该直角三角形中的每一条直角边.
    10.三角形中位线定理
    (1)三角形中位线定理:
    三角形的中位线平行于第三边,并且等于第三边的一半.
    (2)几何语言:
    如图,∵点D、E分别是AB、AC的中点
    ∴DE∥BC,DE=12BC.

    11.翻折变换(折叠问题)
    1、翻折变换(折叠问题)实质上就是轴对称变换.
    2、折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.
    3、在解决实际问题时,对于折叠较为复杂的问题可以实际操作图形的折叠,这样便于找到图形间的关系.
    首先清楚折叠和轴对称能够提供给我们隐含的并且可利用的条件.解题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.我们运用方程解决时,应认真审题,设出正确的未知数.
    声明:试题解析著作权属菁优网所有,未经书面同意,不得复制发布日期:2023/7/18 18:15:22;用户:组卷2;邮箱:zyb002@xyh.com;学号:41418965
    相关试卷

    2024年中考数学复习热搜题速递分类汇编: 这是一份2024年中考数学复习热搜题速递分类汇编,共23页。试卷主要包含了,其部分图象如图所示,下列结论等内容,欢迎下载使用。

    2024年中考数学复习热搜题速递之三角形(2023年7月): 这是一份2024年中考数学复习热搜题速递之三角形(2023年7月),共32页。

    2024年中考数学复习热搜题速递之圆: 这是一份2024年中考数学复习热搜题速递之圆,共37页。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        使用学贝下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        即将下载

        2024年中考数学复习热搜题速递之三角形
        该资料来自成套资源,打包下载更省心 该专辑正在参与特惠活动,低至4折起
        [共10份]
        浏览全套
          立即下载(共1份)
          返回
          顶部
          Baidu
          map