2019年浙江省台州市中考数学试卷-(6年中考)
展开2019年浙江省台州市中考数学试卷-(6年中考)
一、选择题(本题有10小题,每小题4分,共40分)
1.计算2a﹣3a,结果正确的是( )
A.﹣1 B.1 C.﹣a D.a
2.如图是某几何体的三视图,则该几何体是( )
A.长方体 B.正方体 C.圆柱 D.球
3.2019年台州市计划安排重点建设项目344个,总投资595200000000元.用科学记数法可将595200000000表示为( )
A.5.952×1011 B.59.52×1010 C.5.952×1012 D.5952×109
4.下列长度的三条线段,能组成三角形的是( )
A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11
5.方差是刻画数据波动程度的量.对于一组数据x1,x2,x3,…,xn,可用如下算式计算方差:s2=[(x1﹣5)2+(x2﹣5)2+(x3﹣5)2+…+(xn﹣5)2],其中“5”是这组数据的( )
A.最小值 B.平均数 C.中位数 D.众数
6.一道来自课本的习题:
从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.甲地到乙地全程是多少?
小红将这个实际问题转化为二元一次方程组问题,设未知数x,y,已经列出一个方程+=,则另一个方程正确的是( )
A.+= B.+= C.+= D.+=
7.如图,等边三角形ABC的边长为8,以BC上一点O为圆心的圆分别与边AB,AC相切,则⊙O的半径为( )
A.2 B.3 C.4 D.4﹣
8.如图,有两张矩形纸片ABCD和EFGH,AB=EF=2cm,BC=FG=8cm.把纸片ABCD交叉叠放在纸片EFGH上,使重叠部分为平行四边形,且点D与点G重合.当两张纸片交叉所成的角α最小时,tanα等于( )
A. B. C. D.
9.已知某函数的图象C与函数y=的图象关于直线y=2对称.下列命题:①图象C与函数y=的图象交于点(,2);②点(,﹣2)在图象C上;③图象C上的点的纵坐标都小于4;④A(x1,y1),B(x2,y2)是图象C上任意两点,若x1>x2,则y1>y2.其中真命题是( )
A.①② B.①③④ C.②③④ D.①②③④
10.如图是用8块A型瓷砖(白色四边形)和8块B型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A型瓷砖的总面积与B型瓷砖的总面积之比为( )
A.:1 B.3:2 C.:1 D.:2
二、填空题(本题有6小题,每小题5分,共30分)
11.分解因式:ax2﹣ay2= .
12.若一个数的平方等于5,则这个数等于 .
13.一个不透明的布袋中仅有2个红球,1个黑球,这些球除颜色外无其它差别.先随机摸出一个小球,记下颜色后放回搅匀,再随机摸出一个小球,则两次摸出的小球颜色不同的概率是 .
14.如图,AC是圆内接四边形ABCD的一条对角线,点D关于AC的对称点E在边BC上,连接AE.若∠ABC=64°,则∠BAE的度数为 .
15.砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,…,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,…,接着把编号是3的整数倍的“金蛋”全部砸碎……按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共 个.
16.如图,直线l1∥l2∥l3,A,B,C分别为直线l1,l2,l3上的动点,连接AB,BC,AC,线段AC交直线l2于点D.设直线l1,l2之间的距离为m,直线l2,l3之间的距离为n,若∠ABC=90°,BD=4,且=,则m+n的最大值为 .
三、解答题(本题8小题,共80分)
17.(8分)计算:+|1﹣|﹣(﹣1).
18.(8分)先化简,再求值:﹣,其中x=.
19.(8分)图1是一辆在平地上滑行的滑板车,图2是其示意图.已知车杆AB长92cm,车杆与脚踏板所成的角∠ABC=70°,前后轮子的半径均为6cm,求把手A离地面的高度(结果保留小数点后一位;参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75).
20.(8分)如图1,某商场在一楼到二楼之间设有上、下行自动扶梯和步行楼梯.甲、乙两人从二楼同时下行,甲乘自动扶梯,乙走步行楼梯,甲离一楼地面的高度h(单位:m)与下行时间x(单位:s)之间具有函数关系h=﹣x+6,乙离一楼地面的高度y(单位:m)与下行时间x(单位:s)的函数关系如图2所示.
(1)求y关于x的函数解析式;(2)请通过计算说明甲、乙两人谁先到达一楼地面.
21.(10分)安全使用电瓶车可以大幅度减少因交通事故引发的人身伤害,为此交警部门在全市范围开展了安全使用电瓶车专项宣传活动.在活动前和活动后分别随机抽取了部分使用电瓶车的市民,就骑电瓶车戴安全帽情况进行问卷调查,将收集的数据制成如下统计图表.
(1)宣传活动前,在抽取的市民中哪一类别的人数最多?占抽取人数的百分之几?
(2)该市约有30万人使用电瓶车,请估计活动前全市骑电瓶车“都不戴”安全帽的总人数;
(3)小明认为,宣传活动后骑电瓶车“都不戴”安全帽的人数为178,比活动前增加了1人,因此交警部门开展的宣传活动没有效果.小明分析数据的方法是否合理?请结合统计图表,对小明分析数据的方法及交警部门宣传活动的效果谈谈你的看法.#JY
22.(12分)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.
(1)已知凸五边形ABCDE的各条边都相等.
①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;
②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:
(2)判断下列命题的真假.(在括号内填写“真”或“假”)
如图3,已知凸六边形ABCDEF的各条边都相等.
①若AC=CE=EA,则六边形ABCDEF是正六边形;( )
②若AD=BE=CF,则六边形ABCDEF是正六边形. ( )
23.(12分)已知函数y=x2+bx+c(b,c为常数)的图象经过点(﹣2,4).
(1)求b,c满足的关系式;
(2)设该函数图象的顶点坐标是(m,n),当b的值变化时,求n关于m的函数解析式;
(3)若该函数的图象不经过第三象限,当﹣5≤x≤1时,函数的最大值与最小值之差为16,求b的值.
24.(14分)如图,正方形ABCD的边长为2,E为AB的中点,P是BA延长线上的一点,连接PC交AD于点F,AP=FD.
(1)求的值;
(2)如图1,连接EC,在线段EC上取一点M,使EM=EB,连接MF,求证:MF=PF;
(3)如图2,过点E作EN⊥CD于点N,在线段EN上取一点Q,使AQ=AP,连接BQ,BN.将△AQB绕点A旋转,使点Q旋转后的对应点Q'落在边AD上.请判断点B旋转后的对应点B'是否落在线段BN上,并说明理由.
2019年浙江省台州市中考数学试卷答案
1. C.2. C.3. A.4. B.5. B.6. B.7. A.8. D.9. A.10. A.
11. a(x+y)(x﹣y).12.±.13. .14.52°.15. 3.16. .
17.解:原式=.
18.解:﹣==,
当x=时,原式==﹣6.
19.解:过点A作AD⊥BC于点D,延长AD交地面于点E,
∵sin∠ABD=,
∴AD=92×0.94≈86.48,
∵DE=6,
∴AE=AD+DE=92.5,
∴把手A离地面的高度为92.5cm.
20.解:(1)设y关于x的函数解析式是y=kx+b,
,解得,,
即y关于x的函数解析式是y=﹣x+6;
(2)当h=0时,0=﹣x+6,得x=20,
当y=0时,0=﹣x+6,得x=30,
∵20<30,
∴甲先到达地面.
21.解:(1)宣传活动前,在抽取的市民中偶尔戴的人数最多,
占抽取人数:;
答:宣传活动前,在抽取的市民中偶尔戴的人数最多,占抽取人数的51%,
(2)估计活动前全市骑电瓶车“都不戴”安全帽的总人数:30万×=5.31万(人),
答:估计活动前全市骑电瓶车“都不戴”安全帽的总人数5.31万人;
(3)宣传活动后骑电瓶车“都不戴”安全帽的百分比:=8.9%,
活动前全市骑电瓶车“都不戴”安全帽的百分比:,
8.9%<17.7%,
因此交警部门开展的宣传活动有效果.
22.(1)①证明:∵凸五边形ABCDE的各条边都相等,
∴AB=BC=CD=DE=EA,
在△ABC、△BCD、△CDE、△DEA、EAB中,,
∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),
∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,
∴五边形ABCDE是正五边形;
②解:若AC=BE=CE,五边形ABCDE是正五边形,理由如下:
在△ABE、△BCA和△DEC中,,
∴△ABE≌△BCA≌△DEC(SSS),
∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,
在△ACE和△BEC中,,
∴△ACE≌△BEC(SSS),
∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,
∵四边形ABCE内角和为360°,
∴∠ABC+∠ECB=180°,
∴AB∥CE,
∴∠ABE=∠BEC,∠BAC=∠ACE,
∴∠CAE=∠CEA=2∠ABE,
∴∠BAE=3∠ABE,
同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,
∴五边形ABCDE是正五边形;
(2)解:①若AC=CE=EA,如图3所示:
则六边形ABCDEF是正六边形;真命题;理由如下:
∵凸六边形ABCDEF的各条边都相等,
∴AB=BC=CD=DE=EF=EA,
在△AEF、△CAB和△ECD中,,
∴△AEF≌△CAB≌△ECD(SSS),
∴∠F=∠B=∠D,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC,
∵AC=CE=EA,
∴∠EAC=∠ECA=∠AEC=60°,
设∠F=∠B=∠D=y,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=x,
则y+2x=180°①,y﹣2x=60°②,
①+②得:2y=240°,
∴y=120°,x=30°,
∴∠F=∠B=∠D=120°,∠FEA=∠FAE=∠BAC=∠BCA=∠DCE=∠DEC=30°,
∴∠BAF=∠BCD=∠DEF=30°+30°+60°=120°,
∴∠F=∠B=∠D=∠BAF=∠BCD=∠DEF,
∴六边形ABCDEF是正六边形;
故答案为:真;
②若AD=BE=CF,则六边形ABCDEF是正六边形;真命题;理由如下:
如图4所示:连接AE、AC、CE,
在△BFE和△FBC中,,
∴△BFE≌△FBC(SSS),
∴∠BFE=∠FBC,
∵AB=AF,
∴∠AFB=∠ABF,
∴∠AFE=∠ABC,
在△FAE和△BCA中,,
∴△FAE≌△BCA(SAS),
∴AE=CA,
同理:AE=CE,
∴AE=CA=CE,
由①得:六边形ABCDEF是正六边形;
故答案为:真.
23.解:(1)将点(﹣2,4)代入y=x2+bx+c,
得﹣2b+c=0,
∴c=2b;
(2)m=﹣,n=,
∴n=,
∴n=2b﹣m2,
(3)y=x2+bx+2b=(x+)2﹣+2b,
对称轴x=﹣,
当b≤0时,c≤0,函数不经过第三象限,则c=0;
此时y=x2,当﹣5≤x≤1时,函数最小值是0,最大值是25,
∴最大值与最小值之差为25;(舍去)
当b>0时,c>0,函数不经过第三象限,则△≤0,
∴0≤b≤8,
∴﹣4≤x=﹣≤0,
当﹣5≤x≤1时,函数有最小值﹣+2b,
当﹣5≤﹣<﹣2时,函数有最大值1+3b,
当﹣2<﹣≤1时,函数有最大值25﹣3b;
函数的最大值与最小值之差为16,
当最大值1+3b时,1+3b+﹣2b=16,
∴b=6或b=﹣10,
∵4≤b≤8,
∴b=6;
当最大值25﹣3b时,25﹣3b+﹣2b=16,
∴b=2或b=18,
∵2≤b≤4,
∴b=2;
综上所述b=2或b=6;
24.解:(1)设AP=FD=a,
∴AF=2﹣a,
∵四边形ABCD是正方形∴AB∥CD
∴△AFP∽△DFC∴
即∴a=﹣1
∴AP=FD=﹣1,∴AF=AD﹣DF=3﹣
∴=
(2)在CD上截取DH=AF
∵AF=DH,∠PAF=∠D=90°,AP=FD,∴△PAF≌△HDF(SAS)
∴PF=FH,
∵AD=CD,AF=DH∴FD=CH=AP=﹣1
∵点E是AB中点,
∴BE=AE=1=EM∴PE=PA+AE=
∵EC2=BE2+BC2=1+4=5,
∴EC=
∴EC=PE,CM=﹣1
∴∠P=∠ECP
∵AP∥CD
∴∠P=∠PCD
∴∠ECP=∠PCD,且CM=CH=﹣1,CF=CF
∴△FCM≌△FCH(SAS)
∴FM=FH
∴FM=PF
(3)若点B'在BN上,如图,以A原点,AB为y轴,AD为x轴建立平面直角坐标系,
∵EN⊥AB,AE=BE
∴AQ=BQ=AP=﹣1
由旋转的性质可得AQ=AQ'=﹣1,AB=AB'=2,Q'B'=QB=﹣1,
∵点B(0,﹣2),点N(2,﹣1)
∴直线BN解析式为:y=x﹣2
设点B'(x,x﹣2)
∴AB'==2
∴x=
∴点B'(,﹣)
∵点Q'(﹣1,0)
∴B'Q'=≠﹣1
∴点B旋转后的对应点B'不落在线段BN上.
2014年浙江省台州市中考数学试卷(word整理版)
一、选择题(本题有10个小题,每小题4分,共40分)
1.计算﹣4×(﹣2)的结果是( )
A.
8
B.
﹣8
C.
6
D.
﹣2
2.如图,由相同的小正方体搭成的几何体的主视图是( )
A. B. C. D.
3.如图,跷跷板AB的支柱OD经过它的中点O,且垂直与地面BC,垂足为D,OD=50cm,当它的一端B着地时,另一端A离地面的高度AC为( )
A.
25cm
B.
50cm
C.
75cm
D.
100cm
4.下列整数中,与最接近的是( )
A.
4
B.
5
C.
6
D.
7
5.从下列直角三角板与圆弧的位置关系中,可判断圆弧为半圆的是( )
A.
B.
C.
D.
6.某品牌电插座抽样检查的合格率为99%,则下列说法总正确的是( )
A.
购买100个该品牌的电插座,一定有99个合格
B.
购买1000个该品牌的电插座,一定有10个不合格
C.
购买20个该品牌的电插座,一定都合格
D.
即使购买一个该品牌的电插座,也可能不合格
7.将分式方程1﹣=去分母,得到正确的整式方程是( )
A.
1﹣2x=3
B.
x﹣1﹣2x=3
C.
1+2x=3
D.
x﹣1+2x=3
8.如图,把一个小球垂直向上抛出,则下列描述该小球的运动速度v(单位:m/s)与运动时间(单位:s)关系的函数图象中,正确的是( )
A.
B.
C.
D.
9.如图,F是正方形ABCD的边CD上的一个动点,BF的垂直平分线交对角线AC于点E,连接BE,FE,则∠EBF的度数是( )
A.
45°
B.
50°
C.
60°
D.
不确定
10.如图,菱形ABCD的对角线AC=4cm,把它沿着对角线AC方向平移1cm得到菱形EFGH,则图中阴影部分图形的面积与四边形EMCN的面积之比为( )
A.
4:3
B.
3:2
C.
14:9
D.
17:9
二、填空题(本题有6小题,每小题5分,共30分)
11.计算x•2x2的结果是 .
12.如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是 .
13.因式分解a3﹣4a的结果是 .
14.抽屉里放着黑白两种颜色的袜子各1双(除颜色外其余都相同),在看不见的情况下随机摸出两只袜子,它们恰好同色的概率是 .
15.如图是一个古代车轮的碎片,小明为求其外圆半径,连结外圆上的两点A、B,并使AB与车轮内圆相切于点D,做CD⊥AB交外圆于点C.测得CD=10cm,AB=60cm,则这个车轮的外圆半径为 cm.
16.有一个计算程序,每次运算都是把一个数先乘以2,再除以它与1的和,多次重复进行这种运算的过程如下:
则第n次运算的结果yn= (用含字母x和n的代数式表示).
三、解答题(本题共8小题,第17~20题每题8分,第21题10分,第22、23题每题12分,第24题14分,共80分)
17.(8分)计算:|2﹣1|+(﹣1)0﹣()﹣1.
18.(8分)解不等式组:,并把解集在如图数轴上表示出来.
19.(8分)已知反比函数y=,当x=2时,y=3.
(1)求m的值; (2)当3≤x≤6时,求函数值y的取值范围.
20.(8分)如图1是某公交汽车挡风玻璃的雨刮器,其工作原理如图2.雨刷EF⊥AD,垂足为A,AB=CD且AD=BC,这样能使雨刷EF在运动时,始终垂直于玻璃窗下沿BC,请证明这一结论.
21.(10分)如图,某翼装飞行员从离水平地面高AC=500m的A处出发,沿这俯角为15°的方向,直线滑行1600米到达D点,然后打开降落伞以75°的俯角降落到地面上的B点.求他飞行的水平距离BC(结果精确到1m).
22.(12分)为了估计鱼塘中成品鱼(个体质量在0.5kg及以上,下同)的总质量,先从鱼塘中捕捞50条成品鱼,称得它们的质量如表:
质量/kg
0.5
0.6
0.7
1.0
1.2
1.6
1.9
数量/条
1
8
15
18
5
1
2
然后做上记号再放回水库中,过几天又捕捞了100条成品鱼,发现其中2条带有记号.
(1)请根据表中数据补全如图的直方图(各组中数据包括左端点不包括右端点).
(2)根据图中数据分组,估计从鱼塘中随机捕一条成品鱼,其质量落在哪一组的可能性最大?
(3)根据图中数据分组,估计鱼塘里质量中等的成品鱼,其质量落在哪一组内?
(4)请你用适当的方法估计鱼塘中成品鱼的总质量(精确到1kg).
23.(12分)某公司经营杨梅业务,以3万元/吨的价格向农户收购杨梅后,分拣成A、B两类,A类杨梅包装后直接销售;B类杨梅深加工后再销售.A类杨梅的包装成本为1万元/吨,根据市场调查,它的平均销售价格y(单位:万元/吨)与销售数量x(x≥2)之间的函数关系如图;B类杨梅深加工总费用s(单位:万元)与加工数量t(单位:吨)之间的函数关系是s=12+3t,平均销售价格为9万元/吨.
(1)直接写出A类杨梅平均销售价格y与销售量x之间的函数关系式;
(2)第一次,该公司收购了20吨杨梅,其中A类杨梅有x吨,经营这批杨梅所获得的毛利润为w万元(毛利润=销售总收入﹣经营总成本).
①求w关于x的函数关系式;
②若该公司获得了30万元毛利润,问:用于直销的A类杨梅有多少吨?
(3)第二次,该公司准备投入132万元,请设计一种经营方案,使公司获得最大毛利润,并求出最大毛利润.
24.(14分)研究几何图形,我们往往先给出这类图形的定义,再研究它的性质和判定.
定义:六个内角相等的六边形叫等角六边形.
(1)研究性质
①如图1,等角六边形ABCDEF中,三组正对边AB与DE,BC与EF,CD与AF分别有什么位置关系?证明你的结论
②如图2,等角六边形ABCDEF中,如果有AB=DE,则其余两组正对边BC与EF,CD与AF相等吗?证明你的结论
③如图3,等角六边形ABCDEF中,如果三条正对角线AD,BE,CF相交于一点O,那么三组正对边AB与DE,BC与EF,CD与AF分别有什么数量关系?证明你的结论.
(2)探索判定
三组正对边分别平行的六边形,至少需要几个内角为120°,才能保证六边形一定是等角六边形?
浙江省台州市2014年中考数学试卷答案
1.A 2.D 3.D 4.B 5.B 6.D 7.B 8.C 9.A 10.C
11. 2x3 .12. 55° .13. a(a+2)(a﹣2) .14.13.15. 50 .16. .
17.解:原式=2﹣1+1﹣
=.
18.解:
∵解不等式①得:x>2,
解不等式②得:x<3,
∴不等式组的解集为2<x<3,
在数轴上表示为:
.
19.解:(1)把x=2时,y=3代入y=,得
3=,
解得:m=﹣1;
(2)由m=﹣1知,该反比例函数的解析式为:y=.
当x=3时,y=2;
当x=6时,y=1.
∴当3≤x≤6时,函数值y的取值范围是:1≤y≤2.
20.证明:∵AB=CD、AD=BC,
∴四边形ABCD是平行四边形,
∴AD∥BC,
又∵EF⊥AD,
∴EF⊥BC.
21.解:过点D作DE⊥AC于点E,过点D作DF⊥BC于点F,
由题意可得:∠ADE=15°,∠BDF=15°,AD=1600m,AC=500m,
∴cos∠ADE=cos15°=≈0.97,
∴≈0.97,
解得:DE=1552(m),
sin15°=≈0.26,
∴≈0.26,
解得;AE=416(m),
∴DF=500﹣416=84(m),
∴tan∠BDF=tan15°=≈0.27,
∴≈0.27,
解得:BF=22.68(m),
∴BC=CF+BF=1552+22.68=1574.68≈1575(m),
答:他飞行的水平距离为1575m.
22.解:(1)由函数图象可以得出1.1﹣1.4的有5条,补全图形,得:
(2)由题意,得
0.5﹣0.8的频率为:24÷50=0.48,
0.8﹣1.1的频率为:18÷50=0.36,
1.1﹣1.4的频率为:5÷50=0.1,
1.4﹣1.7的频率为:1÷50=0.02,
1.7﹣2.0的频率为:2÷50=0.04.
∵0.48>0.36>0.1>0.04>0.02.
∴估计从鱼塘中随机捕一条成品鱼,其质量落在0.5﹣0.8的可能性最大;
(3)这组数据的个数为50,就可以得出第25个和第26个数分别是1.0,1.0,
∴(1.0+1.0)÷2=1.0
鱼塘里质量中等的成品鱼,其质量落在0.8﹣1.1内;
(4)设鱼塘中成品鱼的总质量为x,由题意,得
50:x=2:100,
解得:x=2500.
2500×=2260kg.
23.解:(1)①当2≤x<8时,如图,
设直线AB解析式为:y=kx+b,将A(2,12)、B(8,6)代入得:
,解得,
∴y=﹣x+14;
②当x≥8时,y=6.
∴A类杨梅平均销售价格y与销售量x之间的函数关系式为:
y=.
(2)设销售A类杨梅x吨,则销售B类杨梅(20﹣x)吨.
①当2≤x<8时,
wA=x(﹣x+14)﹣x=﹣x2+13x;
wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x
∴w=wA+wB﹣3×20
=(﹣x2+13x)+(108﹣6x)﹣60
=﹣x2+7x+48;
当x≥8时,
wA=6x﹣x=5x;
wB=9(20﹣x)﹣[12+3(20﹣x)]=108﹣6x
∴w=wA+wB﹣3×20
=(5x)+(108﹣6x)﹣60
=﹣x+48.
∴w关于x的函数关系式为:
w=.
②当2≤x<8时,﹣x2+7x+48=30,解得x1=9,x2=﹣2,均不合题意;
当x≥8时,﹣x+48=30,解得x=18.
∴当毛利润达到30万元时,直接销售的A类杨梅有18吨.
(3)设该公司用132万元共购买了m吨杨梅,其中A类杨梅为x吨,B类杨梅为(m﹣x)吨,
则购买费用为3m万元,A类杨梅加工成本为x万元,B类杨梅加工成本为[12+3(m﹣x)]万元,
∴3m+x+[12+3(m﹣x)]=132,化简得:x=3m﹣60.
①当2≤x<8时,
wA=x(﹣x+14)﹣x=﹣x2+13x;
wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12
∴w=wA+wB﹣3×m
=(﹣x2+13x)+(6m﹣6x﹣12)﹣3m
=﹣x2+7x+3m﹣12.
将3m=x+60代入得:w=﹣x2+8x+48=﹣(x﹣4)2+64
∴当x=4时,有最大毛利润64万元,
此时m=,m﹣x=;
②当x>8时,
wA=6x﹣x=5x;
wB=9(m﹣x)﹣[12+3(m﹣x)]=6m﹣6x﹣12
∴w=wA+wB﹣3×m
=(5x)+(6m﹣6x﹣12)﹣3m
=﹣x+3m﹣12.
将3m=x+60代入得:w=48
∴当x>8时,有最大毛利润48万元.
综上所述,购买杨梅共吨,其中A类杨梅4吨,B类吨,公司能够获得最大毛利润,最大毛利润为64万元.
24.解:(1)①结论:AB∥DE,BC∥EF,CD∥AF.
证明:连接AD,如图1,
∵六边形ABCDEF是等角六边形,∴∠BAF=∠F=∠E=∠EDC=∠C=∠B==120°.
∵∠DAF+∠F+∠E+∠EDA=360°,∴∠DAF+∠EDA=360°﹣120°﹣120°=120°.
∵∠DAF+∠DAB=120°,∴∠DAB=∠EDA.∴AB∥DE.
同理BC∥EF,CD∥AF.
②结论:EF=BC,AF=DC.
证明:连接AE、DB,如图2,
∵AB∥DE,AB=DE,∴四边形ABDE是平行四边形.
∴AE=DB,∠EAB=∠BDE.
∵∠BAF=∠EDC.∴∠FAE=∠CDB.
在△AFE和△DCB中,
.
∴△AFE≌△DCB.
∴EF=BC,AF=DC.
③结论:AB=DE,AF=DC,EF=BC.
延长FE、CD相交于点P,延长EF、BA相交于点Q,延长DC、AB相交于点S,如图3.
∵六边形ABCDEF是等角六边形,∴∠BAF=∠AFE=120°.∴∠QAF=∠QFA=60°.
∴△QAF是等边三角形.∴∠Q=60°,QA=QF=AF.
同理:∠S=60°,SB=SC=BC;∠P=60°,PE=PD=ED.
∵∠S=∠P=60°,∴△PSQ是等边三角形.∴PQ=QS=SP.
∴QB=QS﹣BS=PS﹣CS=PC.∴AB+AF=AB+QA=QB=PC=PD+DC=ED+DC.
∵AB∥ED,∴△AOB~△DOE.∴.
同理:,.
∴.
∴==1.
∴AB=ED,AF=DC,EF=BC.
(2)连接BF,如图4,
∵BC∥EF,∴∠CBF+∠EFB=180°.
∵∠A+∠ABF+∠AFB=180°,∴∠ABC+∠A+∠AFE=360°.
同理:∠A+∠ABC+∠C=360°.
∴∠AFE=∠C.
同理:∠A=∠D,∠ABC=∠E.
Ⅰ.若只有1个内角等于120°,不能保证该六边形一定是等角六边形.
反例:当∠A=120°,∠ABC=150°时,∠D=∠A∠=120°,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=(720°﹣120°﹣120°﹣150°﹣150°)=90°.
此时该六边形不是等角六边形.
Ⅱ.若有2个内角等于120°,也不能保证该六边形一定是等角六边形.
反例:当∠A=∠D=120°,∠ABC=150°时,∠E=∠ABC=150°.
∵六边形的内角和为720°,∴∠AFE=∠C=(720°﹣120°﹣120°﹣150°﹣150°)=90°.
此时该六边形不是等角六边形.
Ⅲ.若有3个内角等于120°,能保证该六边形一定是等角六边形.
设∠A=∠D=α,∠ABC=∠E=β,∠AFE=∠C=γ.则2α+2β+2γ=720°.∴α+β+γ=360°.
∵有3个内角等于120°,∴α、β、γ中至少有两个为120°.
若α、β、γ都等于120°,则六个内角都等于120°;
若α、β、γ中有两个为120°,根据α+β+γ=360°可得第三个也等于120°,则六个内角都等于120°.
综上所述:至少有3个内角等于120°,能保证该六边形一定是等角六边形.
2015年浙江省台州市中考数学试卷(word整理版)
一. 选择题(本大题共10小题,每小题4分,共40分)
1.单项式2a的系数是( )
A.2 B.2a C.1 D.a
2.下列四个几何体中,左视图为圆的是( )
A B C D
3.在下列调查中,适宜采用全面调查的是( )
A.了解我省中学生视力情况 B.了解九(1)班学生校服的尺码情况
C.检测一批电灯泡的使用寿命 D.调查台州《600全民新闻》栏目的收视率
4.若反比例函数的图象经过点(2,-1),则该反比例函数的图象在( )
A.第一、二象限 B.第一、三象限 C.第二、三象限 D.第二、四象限
5.若一组数据3,x,4,5,6.,则这组数据的中位数为( )
A. 3 B.4 C.5 D.6
6.把多项式分解因式,结果正确的是( )
A. B. C. D.
7.设二次函数图象的对称轴为直线L上,则点M的坐标可能是( )
A.(1,0) B.(3,0) C.(-3,0) D.(0,-4)
8.如果将长为6cm,宽为5cm的长方形纸片折叠一次,那么这条折痕的长不可能是( )
A.8cm B.cm C.5.5cm D.1cm
9.如图,在菱形ABCD中,AB=8,点E、F分别在AB、AD上,且AE=AF,过点E作EG∥AD交CD于点G,过点F作FH∥AB交BC于点H,EG与FH交于点O,当四边形AEOF与四边形CGOH的周长之差为12时,AE的值为( )
A.6.5 B.6 C.5.5 D.5
10.某班有20位同学参加围棋、象棋比赛,甲说:“只参加一项的人数大于14人。”乙说:“两项都参加的人数小于5人。”对于甲、乙两人的说法,有下列四个命题,其中真命题的是( )
A.若甲对,则乙对 B.若乙对,则甲对 C.若乙错,则甲错 D.若甲粗,则乙对
(第9题图) (第16题图)
二.填空题(本大题共6小题,每小题5分,共30分)
11.不等式的解集是
12.有四张质地、大小、反面完全相同的不透明卡片,正面分别写着数字1,2,3,4,现把它们的正面向下,随机摆放在桌面上,从中任意抽出一张,则抽出的数字是奇数的概率
是
13.如图,在Rt△ABC中,∠C=90°,AD是△ABC的角平分线,DC=3,则点D到AB的距离是
14.如图,这是台州市地图的一部分,分别以正东、正北方向为x轴、y轴的正方向建立直角
坐标系,规定一个单位长度表示1km,甲、乙两人对着地图如下描述路桥区A处的位置
则椒江区B处的坐标是
15.关于x的方程,有以下三个结论:①当m=0时,方程只有一个实数解②当时,方程有两个不等的实数解③无论m取何值,方程都有一个负数解,其中正确的是 (填序号)
16.如图,正方形ABCD的边长为1,中心为点O,有一边长大小不定的正六边形EFGHIJ绕点O可任意旋转,在旋转过程中,这个正六边形始终在正方形ABCD内(包括正方形的边),当这个六边形的边长最大时,AE的最小值为
三. 解答题(本大题共8小题,共80分)
17.计算:
18.先化简,再求值:,其中
19.如图,这是一把可调节座椅的侧面示意图,已知头枕上的点到调节器点O处的距离为80cm,AO与地面垂直,现调整靠背,把OA绕点O旋转35°到OA’处,求调整后点A’比调整前点A的高度降低了多少cm?(结果取整数)?
(参考数据:sin35°0.57,cos35°0.82,tan35°0.70)
20.图1中的摩天轮可抽象成一个圆,圆上一点离地面的高度y(m)与旋转时间x(min)之间的关系如图2所示
(1)根据图2填表:
x(min)
0
3
6
8
12
…
y(m)
…
(2)变量y是x的函数吗?为什么?
(3)根据图中的信息,请写出摩天轮的直径
21.某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分别直方图和扇形统计图:
根据图中提供的信息,解答下列问题:
(1)补全频数分布直方图
(2)求扇形统计图中m的值和E组对应的圆心角度数
(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数
22.如图,四边形ABCD内接于⊙O,点E在对角线AC上,EC=BC=DC
(1)若∠CBD=39°,求∠BAD的度数 (2)求证:∠1=∠2
23.如图,在多边形ABCDE中,∠A=∠AED=∠D=90°,AB=5,AE=2,ED=3,过点E作EF∥CB交AB于点F,FB=1,过AE上的点P作PQ∥AB交线段EF于点O,交折线BCD于点Q,设AP=x,PO.OQ=y
(1)①延长BC交ED于点M,则MD= ,DC=
②求y关于x的函数解析式;
(2)当时,,求a,b的值;
(3)当时,请直接写出x的取值范围
24.定义:如图1,点M,N把线段AB分割成AM,MN和BN,若以AM,MN,BN为边的三角形是一个直角三角形,则称点M,N是线段AB的勾股分割点
(1)已知点M,N是线段AB的勾股分割点,若AM=2,MN=3求BN的长;
(2)如图2,在△ABC中,FG是中位线,点D,E是线段BC的勾股分割点,且EC>DE≥BD,连接AD,AE分别交FG于点M,N,求证:点M,N是线段FG的勾股分割点
(3)已知点C是线段AB上的一定点,其位置如图3所示,请在BC上画一点D,使C,D是线段AB的勾股分割点(要求尺规作图,保留作图痕迹,画出一种情形即可)
(4)如图4,已知点M,N是线段AB的勾股分割点,MN>AM≥BN,△AMC,△MND
和△NBM均是等边三角形,AE分别交CM,DM,DN于点F,G,H,若H是DN的中点,试探究,和的数量关系,并说明理由
2015年浙江省台州市中考数学试卷答案
题号
1
2
3
4
5
6
7
8
9
10
答案
A
D
B
D
C
C
B
A
C
B
11. 12. 13.
14.(,) 15.①,③ 16.
17.(8分)解:= ……………………………………6分
=. ……………………………………………………2分
18.(8分)解:= …………………………………3分
………………………………3分
(第19题)
当 时,原式 …………………………1分
. …………………………1分
19.(8分)解:如图,过点作于点,
由旋转可知,, …………1分
在△中, …………3分
. ………………2分
∴.…2分
答:调整后点比调整前点的高度降低了.
20.(8分)解:(1)表格中分别填写:,,,,. ……………………3分
(2)变量是的函数. …………………………2分
时间/小时
2
4
6
8
10
0
频数(人数)
(第21题)
25
理由:因为在这个变化过程中,对于的每一个确定的值,都有唯一确定的值与其对应,所以变量是的函数. ………………………………1分
(3)摩天轮的直径是. …………2分
21.(10分)解:(1)补全频数分布直方图,如图所示. …………4分
(2)∵, …………………1分
∴,
∴. ……………1分
∵, ………1分
∴“E”组对应的圆心角度数
.……1分
(写成14.4,也给分)
(3)人.…………2分
答:估计该校学生中每周的课外阅读时间不小于6小时的人数是人.
(第22题)
22.(12分)(1)解:∵,∴.
∴. ……………4分
∵,∴. ……2分
∴. ……………1分
(2)证明:∵,
∴. …………………………………2分
∵,,…………………1分
∴. ………………………………1分
又∵,
∴. …………………………………1分
(利用其他方法进行解答,酌情给分)
23.(12分)解:(1)①, ……………………………………1分
; ………………………1分
②∵,∴.
在△中,,
∴. ………………………1分
(第23题图1)
M
∵,∴.
∵,∴.
当时,如图1所示,
∵,,
∴四边形是平行四边形.∴.
∴. ………………………1分
(第23题图3)
(第23题图2)
当时,如图2所示,
∵,∴.
∵,∴四边形是矩形.
∴. ………………… 1分
∴. ……………1分
∴
(2)关于的函数图象如图3所示.
当时,随着的增大而减小, ………………… 1分
所以 ………………1分解得 ………………………2分
(3). ……………………………………………………2分
24.(14分)(1)解:当为最大线段时,
(第24题图2)
∵点,是线段的勾股分割点,
∴.
当为最大线段时,
∵点,是线段的勾股分割点,
∴.
(第24题图3)
综上,或. …………………………………3分
(2)证明:∵是△的中位线,∴.
∴.
∴点,分别是,的中点.
∴,,. …………………………2分
∵点,是线段的勾股分割点,且 > ≥,
∴.
∴.
∴.
∴点,是线段的勾股分割点. …………………………2分
(3)用尺规画出图形,如图3所示. …………………………3分
(4)解:. …………………………………1分
理由:设,,,
∵是的中点,∴.
∵△,△均为等边三角形,
(第24题图4)
∴.
∵,
∴△≌△.
∴.∴.
∵,∴△∽△.
∴.
∴.
∵点,是线段的勾股分割点,
∴.
∴,
又∵.∴. …………………………………1分
在△和△中,,,,
∴△≌△.
∴. ……………………………………1分
∵,∴.∴.
∵,,
∴. ……………………………………1分
2016年浙江省台州市中考数学试卷(word整理版)
一、选择题:本大题共10小题,每小题4分,共40分
1.下列各数中,比﹣2小的数是( )
A.﹣3 B.﹣1 C.0 D.2
2.如图所示几何体的俯视图是( )
A. B. C. D.
3.我市今年一季度国内生产总值为77643000000元,这个数用科学记数法表示为( )
A.0.77643×1011 B.7.7643×1011 C.7.7643×1010 D.77643×106
4.下列计算正确的是( )
A.x2+x2=x4 B.2x3﹣x3=x3 C.x2•x3=x6 D.(x2)3=x5
5.质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( )
A.点数都是偶数 B.点数的和为奇数 C.点数的和小于13 D.点数的和小于2
6.化简的结果是( )
A.﹣1 B.1 C. D.
7.如图,数轴上点A,B分别对应1,2,过点B作PQ⊥AB,以点B为圆心,AB长为半径画弧,交PQ于点C,以原点O为圆心,OC长为半径画弧,交数轴于点M,则点M对应的数是( )
A. B. C. D.
8.有x支球队参加篮球比赛,共比赛了45场,每两队之间都比赛一场,则下列方程中符合题意的是( )
A. x(x﹣1)=45 B. x(x+1)=45 C.x(x﹣1)=45 D.x(x+1)=45
9.小红用次数最少的对折方法验证了一条四边形丝巾的形状是正方形,她对折了( )
A.1次 B.2次 C.3次 D.4次
10.如图,在△ABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是( )
A.6 B.2+1 C.9 D.
二、填空题:本大题共6小题,每小题5分,共30分
11.因式分解:x2﹣6x+9= .
12.如图,把三角板的斜边紧靠直尺平移,一个顶点从刻度“5”平移到刻度“10”,则顶点C平移的距离CC′= .
13.如图,△ABC的外接圆O的半径为2,∠C=40°,则的长是 .
14.不透明袋子中有1个红球、2个黄球,这些球除颜色外无其他差别,从袋子中随机摸出1个球后放回,再随机摸出1个球,两次摸出的球都是黄球的概率是 .
15.如图,把一个菱形绕着它的对角线的交点旋转90°,旋转前后的两个菱形构成一个“星形”(阴影部分),若菱形的一个内角为60°,边长为2,则该“星形”的面积是 .
16.竖直上抛的小球离地高度是它运动时间的二次函数,小军相隔1秒依次竖直向上抛出两个小球,假设两个小球离手时离地高度相同,在各自抛出后1.1秒时到达相同的最大离地高度,第一个小球抛出后t秒时在空中与第二个小球的离地高度相同,则t= .
三、解答题
17.计算:﹣|﹣|+2﹣1.
18.解方程:﹣=2.
19.如图,点P在矩形ABCD的对角线AC上,且不与点A,C重合,过点P分别作边AB,AD的平行线,交两组对边于点E,F和G,H.
(1)求证:△PHC≌△CFP;
(2)证明四边形PEDH和四边形PFBG都是矩形,并直接写出它们面积之间的关系.
20.保护视力要求人写字时眼睛和笔端的距离应超过30cm,图1是一位同学的坐姿,把他的眼睛B,肘关节C和笔端A的位置关系抽象成图2的△ABC,已知BC=30cm,AC=22cm,∠ACB=53°,他的这种坐姿符合保护视力的要求吗?请说明理由.(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈1.3)
21.请用学过的方法研究一类新函数y=(k为常数,k≠0)的图象和性质.
(1)在给出的平面直角坐标系中画出函数y=的图象;
(2)对于函数y=,当自变量x的值增大时,函数值y怎样变化?
22.为了保护视力,学校开展了全校性的视力保健活动,活动前,随机抽取部分学生,检查他们的视力,结果如图所示(数据包括左端点不包括右端点,精确到0.1);活动后,再次检查这部分学生的视力,结果如表所示.
分组
频数
4.0≤x<4.2
2
4.2≤x<4.4
3
4.4≤x<4.6
5
4.6≤x<4.8
8
4.8≤x<5.0
17
5.0≤x<5.2
5
(1)求所抽取的学生人数;
(2)若视力达到4.8及以上为达标,估计活动前该校学生的视力达标率;
(3)请选择适当的统计量,从两个不同的角度分析活动前后相关数据,并评价视力保健活动的效果.
23.定义:有三个内角相等的四边形叫三等角四边形.
(1)三等角四边形ABCD中,∠A=∠B=∠C,求∠A的取值范围;
(2)如图,折叠平行四边形纸片DEBF,使顶点E,F分别落在边BE,BF上的点A,C处,折痕分别为DG,DH.求证:四边形ABCD是三等角四边形.
(3)三等角四边形ABCD中,∠A=∠B=∠C,若CB=CD=4,则当AD的长为何值时,AB的长最大,其最大值是多少?并求此时对角线AC的长.
24.【操作发现】在计算器上输入一个正数,不断地按“”键求算术平方根,运算结果越来越接近1或都等于1.
【提出问题】输入一个实数,不断地进行“乘以常数k,再加上常数b”的运算,有什么规律?
【分析问题】我们可用框图表示这种运算过程(如图a).
也可用图象描述:如图1,在x轴上表示出x1,先在直线y=kx+b上确定点(x1,y1),再在直线y=x上确定纵坐标为y1的点(x2,y1),然后再x轴上确定对应的数x2,…,以此类推.
【解决问题】研究输入实数x1时,随着运算次数n的不断增加,运算结果x,怎样变化.
(1)若k=2,b=﹣4,得到什么结论?可以输入特殊的数如3,4,5进行观察研究;
(2)若k>1,又得到什么结论?请说明理由;
(3)①若k=﹣,b=2,已在x轴上表示出x1(如图2所示),请在x轴上表示x2,x3,x4,并写出研究结论;
②若输入实数x1时,运算结果xn互不相等,且越来越接近常数m,直接写出k的取值范围及m的值(用含k,b的代数式表示)
2016年浙江省台州市中考数学试卷答案
1. A. 2. D. 3. C. 4. B. 5. C. 6. D. 7. B.8. A. 9. C. 10. C.
11.(x﹣3)2. 12. 5. 13. π. 14. . 15. 6﹣6. 16. 1.6.
17.解:原式=2﹣+=2.
18.解:去分母得:x+1=2x﹣14,
解得:x=15,
经检验x=15是分式方程的解.
19.证明:(1)∵四边形ABCD为矩形,
∴AB∥CD,AD∥BC.
∵PF∥AB,
∴PF∥CD,
∴∠CPF=∠PCH.
∵PH∥AD,
∴PH∥BC,
∴∠PCF=∠CPH.
在△PHC和△CFP中,
,
∴△PHC≌△CFP(ASA).
(2)∵四边形ABCD为矩形,
∴∠D=∠B=90°.
又∵EF∥AB∥CD,GH∥AD∥BC,
∴四边形PEDH和四边形PFBG都是矩形.
∵EF∥AB,
∴∠CPF=∠CAB.
在Rt△AGP中,∠AGP=90°,
PG=AG•tan∠CAB.
在Rt△CFP中,∠CFP=90°,
CF=PF•tan∠CPF.
S矩形DEPH=DE•EP=CF•EP=PF•EP•tan∠CPF;
S矩形PGBF=PG•PF=AG•PF•tan∠CAB=EP•PF•tan∠CAB.
∵tan∠CPF=tan∠CAB,
∴S矩形DEPH=S矩形PGBF.
20.解:他的这种坐姿不符合保护视力的要求,
理由:如图2所示:过点B作BD⊥AC于点D,
∵BC=30cm,∠ACB=53°,
∴sin53°==≈0.8,
解得:BD=24,
cos53°=≈0.6,
解得:DC=18,
∴AD=22﹣18=4(cm),
∴AB===<,
∴他的这种坐姿不符合保护视力的要求.
21.解:(1)函数y=的图象,如图所示,
(2)①k>0时,当x<0,y随x增大而增大,x>0时,y随x增大而减小.
②k<0时,当x<0,y随x增大而减小,x>0时,y随x增大而增大.
22.解:(1)∵频数之和=40,
∴所抽取的学生人数40人.
(2)活动前该校学生的视力达标率==37.5%.
(3)①视力4.2≤x<4.4之间活动前有6人,活动后只有3人,人数明显减少.
②活动前合格率37.5%,活动后合格率55%,
视力保健活动的效果比较好.
23.解:(1)∵∠A=∠B=∠C,
∴3∠A+∠ADC=360°,
∴∠ADC=360°﹣3∠A.
∵0<∠ADC<180°,
∴0°<360°﹣3∠A<180°,
∴60°<∠A<120°;
(2)证明:∵四边形DEBF为平行四边形,
∴∠E=∠F,且∠E+∠EBF=180°.
∵DE=DA,DF=DC,
∴∠E=∠DAE=∠F=∠DCF,
∵∠DAE+∠DAB=180°,∠DCF+∠DCB=180°,∠E+∠EBF=180°,
∴∠DAB=∠DCB=∠ABC,
∴四边形ABCD是三等角四边形
(3)①当60°<∠A<90°时,如图1,
过点D作DF∥AB,DE∥BC,
∴四边形BEDF是平行四边形,∠DFC=∠B=∠DEA,
∴EB=DF,DE=FB,
∵∠A=∠B=∠C,∠DFC=∠B=∠DEA,
∴△DAE∽△DCF,AD=DE,DC=DF=4,
设AD=x,AB=y,
∴AE=y﹣4,CF=4﹣x,
∵△DAE∽△DCF,
∴,
∴,
∴y=x2+x+4=﹣(x﹣2)2+5,
∴当x=2时,y的最大值是5,
即:当AD=2时,AB的最大值为5,
②当∠A=90°时,三等角四边形是正方形,
∴AD=AB=CD=4,
③当90°<∠A<120°时,∠D为锐角,如图2,
∵AE=4﹣AB>0,
∴AB<4,
综上所述,当AD=2时,AB的长最大,最大值是5;
此时,AE=1,如图3,
过点C作CM⊥AB于M,DN⊥AB,
∵DA=DE,DN⊥AB,
∴AN=AE=,
∵∠DAN=∠CBM,∠DNA=∠CMB=90°,
∴△DAN∽△CBM,
∴,
∴BM=1,
∴AM=4,CM==,
∴AC===.
24.解:(1)若k=2,b=﹣4,y=2x﹣4,
取x1=3,则x2=2,x3=0,x4=﹣4,…
取x1=4,则x2x3=x4=4,…
取x1=5,则x2=6,x3=8,x4=12,…由此发现:
当x1<4时,随着运算次数n的增加,运算结果xn越来越小.
当x1=4时,随着运算次数n的增加,运算结果xn的值保持不变,都等于4.
当x1>4时,随着运算次数n的增加,运算结果xn越来越大.
(2)当x1>时,随着运算次数n的增加,xn越来越大.
当x1<时,随着运算次数n的增加,xn越来越小.
当x1=时,随着运算次数n的增加,xn保持不变.
理由:如图1中,直线y=kx+b与直线y=x的交点坐标为(,),
当x1>时,对于同一个x的值,kx+b>x,
∴y1>x1
∵y1=x2,
∴x1<x2,同理x2<x3<…<xn,
∴当x1>时,随着运算次数n的增加,xn越来越大.
同理,当x1<时,随着运算次数n的增加,xn越来越小.
当x1=时,随着运算次数n的增加,xn保持不变.
(3)①在数轴上表示的x1,x2,x3如图2所示.
随着运算次数的增加,运算结果越来越接近.
②由(2)可知:﹣1<k<1且k≠0,
由消去y得到x=
∴由①探究可知:m=.
2017年浙江省台州市中考数学试卷(word整理版)
一、选择题(本大题共10小题,每小题4分,共40分)
1.5的相反数是( )
A.5 B.﹣5 C. D.﹣
2.如图所示的工件是由两个长方体构成的组合体,则它的主视图是( )
A. B. C. D.
3.人教版初中数学教科书共六册,总字数是978000,用科学记数法可将978000表示为( )
A.978×103 B.97.8×104 C.9.78×105 D.0.978×106
4.有五名射击运动员,教练为了分析他们成绩的波动程度,应选择下列统计量中的( )
A.方差 B.中位数 C.众数 D.平均数
5.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是( )
A.1 B.2 C. D.4
6.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为I=,当电压为定值时,I关于R的函数图象是( )
A. B. C. D.
7.下列计算正确的是( )
A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2
C.(a+b)2=a2+b2 D.(a﹣b)2=a2﹣2ab+b2
8.如图,已知等腰三角形ABC,AB=AC,若以点B为圆心,BC长为半径画弧,交腰AC于点E,则下列结论一定正确的是( )
A.AE=EC B.AE=BE C.∠EBC=∠BAC D.∠EBC=∠ABE
9.滴滴快车是一种便捷的出行工具,计价规则如下表:
计费项目
里程费
时长费
远途费
单价
1.8元/公里
0.3元/分钟
0.8元/公里
注:车费由里程费、时长费、远途费三部分构成,其中里程费按行车的实际里程计算;时长费按行车的实际时间计算;远途费的收取方式为:行车里程7公里以内(含7公里)不收远途费,超过7公里
的,超出部分每公里收0.8元.
小王与小张各自乘坐滴滴快车,行车里程分别为6公里与8.5公里.如果下车时两人所付车费相同,那么这两辆滴滴快车的行车时间相差( )
A.10分钟 B.13分钟 C.15分钟 D.19分钟
10.如图,矩形EFGH的四个顶点分别在菱形ABCD的四条边上,BE=BF,将△AEH,△CFG分别沿边EH,FG折叠,当重叠部分为菱形且面积是菱形ABCD面积的时,则为( )
A. B.2 C. D.4
二、填空题(本大题共6小题,每小题5分,共30分)
11.因式分解:x2+6x= .
12.如图,已知直线a∥b,∠1=70°,则∠2= .
13.如图,扇形纸扇完全打开后,外侧两竹条AB,AC的夹角为120°,AB长为30厘米,则的长为
厘米.(结果保留π)
14.商家花费760元购进某种水果80千克,销售中有5%的水果正常损耗,为了避免亏本,售价至少应定为 元/千克.
15.三名运动员参加定点投篮比赛,原定出场顺序是:甲第一个出场,乙第二个出场,丙第三个出场,由于某种原因,要求这三名运动员用抽签方式重新确定出场顺序,则抽签后每个运动员的出场顺序都发生变化的概率为 .
16.如图,有一个边长不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组平行的对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是 .
三、解答题(本大题共8小题,共80分)
17.(8分)计算:+(﹣1)0﹣|﹣3|.
18.(8分)先化简,再求值:(1﹣)•,其中x=2017.
19.(8分)如图是一辆小汽车与墙平行停放的平面示意图,汽车靠墙一侧OB与墙MN平行且距离为0.8米,已知小汽车车门宽AO为1.2米,当车门打开角度∠AOB为40°时,车门是否会碰到墙?请说明理由.(参考数据:sin40°≈0.64;cos40°≈0.77;tan40°≈0.84)
20.(8分)如图,直线l1:y=2x+1与直线l2:y=mx+4相交于点P(1,b).
(1)求b,m的值;
(2)垂直于x轴的直线x=a与直线l1,l2分别交于点C,D,若线段CD长为2,求a的值.
21.(10分)家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
(1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:
①m= ,n= ;
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
22.(12分)如图,已知等腰直角三角形ABC,点P是斜边BC上一点(不与B,C重合),PE是△ABP的外接圆⊙O的直径.
(1)求证:△APE是等腰直角三角形;
(2)若⊙O的直径为2,求PC2+PB2的值.
23.(12分)交通工程学理论把在单向道路上行驶的汽车看成连续的流体,并用流量、速度、密度三个概念描述车流的基本特征,其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度,密度k(辆/千米)指通过道路指定断面单位长度内的车辆数.
为配合大数据治堵行动,测得某路段流量q与速度v之间关系的部分数据如下表:
速度v(千米/小时)
…
5
10
20
32
40
48
…
流量q(辆/小时)
…
550
1000
1600
1792
1600
1152
…
(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是 (只填上正确答案的序号)
①q=90v+100;②q=;③q=﹣2v2+120v.
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速度为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足q=vk,请结合(1)中选取的函数关系式继续解决下列问题.
①市交通运行监控平台显示,当12≤v<18时道路出现轻度拥堵.试分析当车流密度k在什么范围时,该路段将出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值.
24.(14分)在平面直角坐标系中,借助直角三角板可以找到一元二次方程的实数根.比如对于方程x2﹣5x+2=0,操作步骤是:
第一步:根据方程的系数特征,确定一对固定点A(0,1),B(5,2);
第二步:在坐标平面中移动一个直角三角板,使一条直角边恒过点A,另一条直角边恒过点B;
第三步:在移动过程中,当三角板的直角顶点落在x轴上点C处时,点C的横坐标m即为该方程的一个实数根(如图1);
第四步:调整三角板直角顶点的位置,当它落在x轴上另一点D处时,点D的横坐标n即为该方程的另一个实数根.
(1)在图2中,按照“第四步”的操作方法作出点D(请保留作出点D时直角三角板两条直角边的痕迹);
(2)结合图1,请证明“第三步”操作得到的m就是方程x2﹣5x+2=0的一个实数根;
(3)上述操作的关键是确定两个固定点的位置,若要以此方法找到一元二次方程ax2+bx+c=0(a≠0,b2﹣4ac≥0)的实数根,请你直接写出一对固定点的坐标;
(4)实际上,(3)中的固定点有无数对,一般地,当m1,n1,m2,n2与a,b,c之间满足怎样的关系时,点P(m1,n1),Q(m2,n2)就是符合要求的一对固定点?
2017年浙江省台州市中考数学试卷答案
1. B.2. A.3. C.4. A5. B.6. C.7. D8. C.9. D.10. A.
11. x(x+6).12. 110°.13. 20π.14. 10.15. .16. ≤a≤3﹣.
17.解:原式=3+1﹣3=1.
18.解:(1﹣)•
=
=
=,
当x=2017时,原式=.
19.解:过点A作AC⊥OB,垂足为点C,
在Rt△ACO中,
∵∠AOC=40°,AO=1.2米,
∴AC=sin∠AOC•AO≈0.64×1.2=0.768,
∵汽车靠墙一侧OB与墙MN平行且距离为0.8米,
∴车门不会碰到墙.
20.解:(1)∵点P(1,b)在直线l1:y=2x+1上,
∴b=2×1+1=3;
∵点P(1,3)在直线l2:y=mx+4上,
∴3=m+4,
∴m=﹣1.
(2)当x=a时,yC=2a+1;
当x=a时,yD=4﹣a.
∵CD=2,
∴|2a+1﹣(4﹣a)|=2,
解得:a=或a=.
∴a的值为或.
21.解:(1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③.
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)①抽样调査的家庭总户数为:80÷8%=1000(户),
m%==20%,m=20,
n%==6%,n=6.
故答案为20,6;
②C类户数为:1000﹣(80+510+200+60+50)=100,
条形统计图补充如下:
③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;
④180×10%=18(万户).
若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.
22.(1)证明:∵AB=AC,∠BAC=90°,
∴∠C=∠ABC=45°,
∴∠AEP=∠ABP=45°,
∵PE是直径,
∴∠PAB=90°,
∴∠APE=∠AEP=45°,
∴AP=AE,
∴△PAE是等腰直角三角形.
(2)作PM⊥AC于M,PN⊥AB于N,则四边形PMAN是矩形,
∴PM=AN,
∵△PCM,△PNB都是等腰直角三角形,
∴PC=PM,PB=PN,
∴PC2+PB2=2(PM2+PN2)=2(AN2+PN2)=2PA2=PE2=22=4.
(也可以证明△ACP≌△ABE,△PBE是直角三角形)
23.解:(1)函数①q=90v+100,q随v的增大而增大,显然不符合题意.
函数②q=q随v的增大而减小,显然不符合题意.
故刻画q,v关系最准确的是③.
故答案为③.
(2)∵q=﹣2v2+120v=﹣2(v﹣30)2+1800,
∵﹣2<0,
∴v=30时,q达到最大值,q的最大值为1800.
(3)①当v=12时,q=1152,此时k=96,
当v=18时,q=1512,此时k=84,
∴84<k≤96.
②当v=30时,q=1800,此时k=60,
∵在理想状态下,假设前后两车车头之间的距离d(米)均相等,
∴流量q最大时d的值为=m.
24.解:(1)如图所示,点D即为所求;
(2)如图所示,过点B作BD⊥x轴于点D,
根据∠AOC=∠CDB=90°,∠ACO=∠CBD,可得△AOC∽△CDB,
∴=,
∴=,
∴m(5﹣m)=2,
∴m2﹣5m+2=0,
∴m是方程x2﹣5x+2=0的实数根;
(3)方程ax2+bx+c=0(a≠0)可化为
x2+x+=0,
模仿研究小组作法可得:A(0,1),B(﹣,)或A(0,),B(﹣,c)等;
(4)如图,P(m1,n1),Q(m2,n2),
设方程的根为x,根据三角形相似可得=,
上式可化为x2﹣(m1+m2)x+m1m2+n1n2=0,
又∵ax2+bx+c=0,即x2+x+=0,
∴比较系数可得m1+m2=﹣,
m1m2+n1n2=.
2018年浙江省台州市中考数学试卷(word整理版)
一、选择题(本题有10小题,每小题4分,共40分)
1.比﹣1小2的数是( )
A.3 B.1 C.﹣2 D.﹣3
2.在下列四个新能源汽车车标的设计图中,属于中心对称图形的是( )
A. B. C. D.
3.计算,结果正确的是( )
A.1 B.x C. D.
4.估计+1的值在( )
A.2和3之间 B.3和4之间 C.4和5之间 D.5和6之间
5.某篮球运动员在连续7场比赛中的得分(单位:分)依次为20,18,23,17,20,20,18,则这组数据的众数与中位数分别是( )
A.18分,17分 B.20分,17分 C.20分,19分 D.20分,20分
6.下列命题正确的是( )
A.对角线相等的四边形是平行四边形 B.对角线相等的四边形是矩形
C.对角线互相垂直的平行四边形是菱形 D.对角线互相垂直且相等的四边形是正方形
7.正十边形的每一个内角的度数为( )
A.120° B.135° C.140° D.144°
8.如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是( )
A. B.1 C. D.
9.甲、乙两运动员在长为100m的直道AB(A,B为直道两端点)上进行匀速往返跑训练,两人同时从A点起跑,到达B点后,立即转身跑向A点,到达A点后,又立即转身跑向B点…若甲跑步的速度为5m/s,乙跑步的速度为4m/s,则起跑后100s内,两人相遇的次数为( )
A.5 B.4 C.3 D.2
10.如图,等边三角形ABC边长是定值,点O是它的外心,过点O任意作一条直线分别交AB,BC于点D,E.将△BDE沿直线DE折叠,得到△B′DE,若B′D,B′E分别交AC于点F,G,连接OF,OG,则下列判断错误的是( )
A.△ADF≌△CGE B.△B′FG的周长是一个定值
C.四边形FOEC的面积是一个定值 D.四边形OGB'F的面积是一个定值
二、填空题(本题有6小题,每小题5分,共30分)
11.如果分式有意义,那么实数x的取值范围是 .
12.已知关于x的一元二次方程x2+3x+m=0有两个相等的实数根,则m= .
13.一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3.随机摸出一个小球然后放回,再随机摸出一个小球,则两次摸出的小球标号相同的概率是 .
14.如图,AB是⊙O的直径,C是⊙O上的点,过点C作⊙O的切线交AB的延长线于点D.若∠A=32°,则∠D= 度.
15.如图,把平面内一条数轴x绕原点O逆时针旋转角θ(0°<θ<90°)得到另一条数轴y,x轴和y轴构成一个平面斜坐标系.规定:过点P作y轴的平行线,交x轴于点A,过点P作x轴的平行线,交y轴于点B,若点A在x轴上对应的实数为a,点B在y轴上对应的实数为b,则称有序实数对(a,b)为点P的斜坐标,在某平面斜坐标系中,已知θ=60°,点M′的斜坐标为(3,2),点N与点M关于y轴对称,则点N的斜坐标为 .
16.如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为 .
三、解答题(本题有8小题,第17~20题每题8分,第21题10分,第22,23题每题12分,第24题14分,共80分)
17.计算:|﹣2|+(﹣1)×(﹣3)
18.解不等式组:
19.图1是一辆吊车的实物图,图2是其工作示意图,AC是可以伸缩的起重臂,其转动点A离地面BD的高度AH为3.4m.当起重臂AC长度为9m,张角∠HAC为118°时,求操作平台C离地面的高度(结果保留小数点后一位:参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)
20.如图,函数y=x的图象与函数y=(x>0)的图象相交于点P(2,m).
(1)求m,k的值;
(2)直线y=4与函数y=x的图象相交于点A,与函数y=(x>0)的图象相交于点B,求线段AB长.
21.某市明年的初中毕业升学考试,拟将“引体向上”作为男生体育考试的一个必考项目,满分为10分.有关部门为提前了解明年参加初中毕业升学考试的男生的“引体向上”水平,在全市八年级男生中随机抽取了部分男生,对他们的“引体向上”水平进行测试,并将测试结果绘制成如下统计图表(部分信息未给出):
请你根据统计图表中的信息,解答下列问题:
抽取的男生“引体向上”成绩统计表
成绩
人数
0分
32
1分
30
2分
24
3分
11
4分
15
5分及以上
m
(1)填空:m= ,n= .
(2)求扇形统计图中D组的扇形圆心角的度数;
(3)目前该市八年级有男生3600名,请估计其中“引体向上”得零分的人数.
22.如图,在Rt△ABC中,AC=BC,∠ACB=90°,点D,E分别在AC,BC上,且CD=CE.
(1)如图1,求证:∠CAE=∠CBD;
(2)如图2,F是BD的中点,求证:AE⊥CF;
(3)如图3,F,G分别是BD,AE的中点,若AC=2,CE=1,求△CGF的面积.
23.某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,井建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数P=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为w(单位:万元)
①求w关于t的函数解析式;
②该药厂销售部门分析认为,336≤w≤513是最有利于该原料药可持续生产和销售的月毛利润范围,求此范围所对应的月销售量P的最小值和最大值.
24.如图,△ABC是⊙O的内接三角形,点D在上,点E在弦AB上(E不与A重合),且四边形BDCE为菱形.(1)求证:AC=CE; (2)求证:BC2﹣AC2=AB•AC;
(3)已知⊙O的半径为3.
①若=,求BC的长;②当为何值时,AB•AC的值最大?
2018年浙江省台州市中考数学试卷答案
1. D.2. D.3. A.4. B.5. D.6. C.7. D.8. B.9. B.10. D.
11. x≠2.12. .13. .14. 26.15.(﹣2,5)16. +3.
17.解:原式=2﹣2+3=3.
18.解:
解不等式①,得x<4,
解不等式②,得x>3,
不等式①,不等式②的解集在数轴上表示,如图
,
原不等式组的解集为3<x<4.
19.解:作CE⊥BD于F,AF⊥CE于F,如图2,
易得四边形AHEF为矩形,
∴EF=AH=3.4m,∠HAF=90°,
∴∠CAF=∠CAH﹣∠HAF=118°﹣90°=28°,
在Rt△ACF中,∵sin∠CAF=,
∴CF=9sin28°=9×0.47=4.23,
∴CE=CF+EF=4.23+3.4≈7.6(m),
答:操作平台C离地面的高度为7.6m.
20.解:(1)∵函数y=x的图象过点P(2,m),
∴m=2,
∴P(2,2),
∵函数y=(x>0)的图象过点P,
∴k=2×2=4;
(2)将y=4代入y=x,得x=4,
∴点A(4,4).
将y=4代入y=,得x=1,
∴点B(1,4).
∴AB=4﹣1=3.
21.解:(1)由题意可得,
本次抽查的学生有:30÷25%=120(人),
m=120﹣32﹣30﹣24﹣11﹣15=8,
n%=24÷120×100%=20%,
故答案为:8,20;
(2)=33°,
即扇形统计图中D组的扇形圆心角是33°;
(3)3600×=960(人),
答:“引体向上”得零分的有960人.
22.解:(1)在△ACE和△BCD中,,
∴△ACE≌△BCD,
∴∠CAE=∠CBD;
(2)如图2,在Rt△BCD中,点F是BD的中点,
∴CF=BF,
∴∠BCF=∠CBF,
由(1)知,∠CAE=∠CBD,
∴∠BCF=∠CAE,
∴∠CAE+∠ACF=∠BCF+∠ACF=∠BAC=90°,
∴∠AMC=90°,
∴AE⊥CF;
(3)如图3,∵AC=2,
∴BC=AC=2,
∵CE=1,
∴CD=CE=1,
在Rt△BCD中,根据勾股定理得,BD==3,
∵点F是BD中点,
∴CF=DF=BD=,
同理:EG=AE=,
连接EF,过点F作FH⊥BC,
∵∠ACB=90°,点F是BD的中点,
∴FH=CD=,
∴S△CEF=CE•FH=×1×=,
由(2)知,AE⊥CF,
∴S△CEF=CF•ME=×ME=ME,
∴ME=,
∴ME=,
∴GM=EG﹣ME=﹣=,
∴S△CFG=CF•GM=××=.
23.解:(1)设8<t≤24时,P=kt+b,
将A(8,10)、B(24,26)代入,得:
,
解得:,
∴P=t+2;
(2)①当0<t≤8时,w=(2t+8)×=240;
当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16;
当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88;
②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2,
∴8<t≤12时,w随t的增大而增大,
当2(t+3)2﹣2=336时,解题t=10或t=﹣16(舍),
当t=12时,w取得最大值,最大值为448,
此时月销量P=t+2在t=10时取得最小值12,在t=12时取得最大值14;
当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529,
当t=12时,w取得最小值448,
由﹣(t﹣21)2+529=513得t=17或t=25,
∴当12<t≤17时,448<w≤513,
此时P=t+2的最小值为14,最大值为19;
综上,此范围所对应的月销售量P的最小值为12吨,最大值为19吨.
24.解:(1)∵四边形EBDC为菱形,
∴∠D=∠BEC,
∵四边形ABDC是圆的内接四边形,
∴∠A+∠D=180°,
又∠BEC+∠AEC=180°,
∴∠A=∠AEC,
∴AC=AE;
(2)以点C为圆心,CE长为半径作⊙C,与BC交于点F,于BC延长线交于点G,则CF=CG,
由(1)知AC=CE=CD,
∴CF=CG=AC,
∵四边形AEFG是⊙C的内接四边形,
∴∠G+∠AEF=180°,
又∵∠AEF+∠BEF=180°,
∴∠G=∠BEF,
∵∠EBF=∠GBA,
∴△BEF∽△BGA,
∴=,即BF•BG=BE•AB,
∵BF=BC﹣CF=BC﹣AC、BG=BC+CG=BC+AC,BE=CE=AC,
∴(BC﹣AC)(BC+AC)=AB•AC,即BC2﹣AC2=AB•AC;
(3)设AB=5k、AC=3k,
∵BC2﹣AC2=AB•AC,
∴BC=2k,
连接ED交BC于点M,
∵四边形BDCE是菱形,
∴DE垂直平分BC,
则点E、O、M、D共线,
在Rt△DMC中,DC=AC=3k,MC=BC=k,
∴DM==k,
∴OM=OD﹣DM=3﹣k,
在Rt△COM中,由OM2+MC2=OC2得(3﹣k)2+(k)2=32,
解得:k=或k=0(舍),
∴BC=2k=4;
②设OM=d,则MD=3﹣d,MC2=OC2﹣OM2=9﹣d2,
∴BC2=(2MC)2=36﹣4d2,
AC2=DC2=DM2+CM2=(3﹣d)2+9﹣d2,
由(2)得AB•AC=BC2﹣AC2
=﹣4d2+6d+18
=﹣4(d﹣)2+,
∴当x=,即OM=时,AB•AC最大,最大值为,
∴DC2=,
∴AC=DC=,
∴AB=,此时=.
2023年浙江省台州市中考数学试卷: 这是一份2023年浙江省台州市中考数学试卷,共25页。试卷主要包含了选择题,四象限D.第一,填空题等内容,欢迎下载使用。
2021年浙江省台州市中考数学试卷: 这是一份2021年浙江省台州市中考数学试卷,共24页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年浙江省台州市中考数学试卷: 这是一份2023年浙江省台州市中考数学试卷,共6页。试卷主要包含了选择题,四象限D.第一,填空题等内容,欢迎下载使用。