- 2024年高考数学艺体生一轮复习高分突破讲义:专题16 等比数列【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:专题17 数列综合应用【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)解析版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:专题18 直线与方程【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:专题18 直线与方程【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)解析版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:专题19 圆的方程【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)解析版 试卷 0 次下载
2024年高考数学艺体生一轮复习高分突破讲义:专题17 数列综合应用【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版
展开【艺体生专供—选择填空抢分专题】备战2023年高考高频考点题型精讲+精练(新高考通用)
专题17 数列综合
考向:数列部分高考题一般是中等难度,分数在10-17分,一般以等差、等比数列的定义、性质或以通项公式、前n项和公式为基础考点,结合数列的递推公式进行命题,侧重于数列的基本量运算、数列的概念及表示法的理解。
考点:数列的递推公式、等差、等比数列的性质、通项公式及前n项和公式、数列求和、构造新数列求通项、求和、数列有关的数学文化问题。
导师建议:新文化题主要是读题抓住题眼,同时找到q的式子也是解决问题的关键!
1.数列的第n项与前n项的和的关系
( 数列的前n项的和为).
2.等差数列的通项公式
;
3.等差中项:若成等差数列,则A叫做与的等差中项,且。
4.等差数列前n项和公式为.
5.等比数列的通项公式;
6.等比中项:若成等比数列,则A叫做与的等差中项,且。
7.等比数列前n项的和公式为或.
【常用结论】
1.
2.;
3.构成等差数列.
4.是关于的一次函数或常数函数,数列也是等差数列.
5.在等差数列,中,它们的前项和分别记为则.
6.().
7.若,则()
8.公比时,,,,成等比数列().
目录一览
①等差等比数列的综合 |
②数列的函数性质 |
③求数列的通项公式 |
④数列求和 |
⑤数列的新文化题 |
高考题及模拟题精选 |
题型精练,巩固基础 |
一、单选题
1.在递增等比数列中,,且是和的等差中项,则( )
A.256 B.512 C.1024 D.2048
2.已知等比数列中,若,且成等差数列,则( )
A.2 B.2或32 C.2或-32 D.-1
3.已知各项均为正数的数列为等比数列,是它的前项和,若,且与的等差中项为5,则( )
A.29 B.31 C.33 D.35
4.已知各项均为正数的等比数列的前项和为若,,成等差数列,则数列的公比为
A. B. C.2 D.3
5.已知是各项不相等的等差数列,若,且成等比数列,则数列的前6项和( )
A.84 B.144 C.288 D.110
6.已知递增等差数列中,且是,的等比中项,则它的第4项到第11项的和为( )
A.180 B.198 C.189 D.168
7.正项等比数列中,是与的等差中项,若,则( )
A.4 B.8 C.32 D.64
8.各项不为零的等差数列中,,数列是等比数列,且,则
A.4 B.8 C.16 D.64
9.下列通项公式中,对应数列是递增数列的是( )
A. B.
C. D.
10.设为等差数列的前n项和.已知,,则( )
A.为递减数列 B.
C.有最大值 D.
11.已知是等差数列的前项和,且,,则下列选项正确的是( )
A.数列为递增数列 B.
C.的最大值为 D.
12.等差数列的前项的和为,已知,,则等差数列的前项的和中,最小值为( ).
A. B. C. D.
13.在数列中,“”是“数列为严格递增数列”的( ).
A.充分非必要条件 B.必要非充分条件
C.充要条件 D.既非充分又非必要条件
14.已知等比数列的前n项和为,若,,且,则实数a的取值范围是( )
A. B. C. D.
15.已知数列中,,且是等差数列,则( )
A.36 B.37 C.38 D.39
16.在数列中,,,则等于( )
A. B. C. D.
17.数列中,,(为正整数),则的值为( )
A. B. C. D.
18.已知数列的前项和,且,则( )
A. B. C. D.
19.在数列中,,,若,则的最小值是( )
A.9 B.10 C.11 D.12
20.已知数列中,,则等于( )
A. B.
C. D.
21.已知数列中,且,则为( )
A. B. C. D.
22.在数列中,,,则的值为( )
A. B. C. D.无法确定
23.若一个数列的后项与其相邻的前项的差值构成的数列为等差数列,则称此数列为二阶等差数列.现有二阶等差数列:2,3,5,8,12,17,23,…,设此数列为,若数列满足,则数列的前n项和( )
A. B.
C. D.
24.已知数列满足,,令,则数列的前2022项和( )
A. B. C. D.
25.记表示不超过实数x的最大整数,记,则( )
A.18154 B.18164 C.18174 D.前三个选项都不对
26.已知数列的通项公式为:,,则数列的前100项之和为( )
A. B. C. D.
27.已知数列的前项和为,,当时,,则等于( )
A.1008 B.1009 C.1010 D.1011
28.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2019中被3除余1且被5除余1的数按从小到大的顺序排成一列,构成数列,则此数列的项数为( )
A.134 B.135 C.136 D.137
29.我们都听说过一个著名的关于指数增长的故事:古希腊著名的数学家、思想家阿基米德与国王下棋.国王输了,问阿基米德要什么奖赏?阿基米德说:“我只要在棋盘上的第一格放一粒米,第二格放二粒,第三格放四粒,第四格放八粒……按此方法放到这棋盘的第64个格子就行了.”通过计算,国王要给阿基米德粒米,这是一个天文数字.年后,又一个数学家小明与当时的国王下棋,也提出了与阿基米德一样的要求,由于当时的国王已经听说过阿基米德的故事,所以没有同意小明的请求.这时候,小明做出了部分妥协,他提出每一个格子放的米的个数按照如下方法计算,首先按照阿基米德的方法,先把米的个数变为前一个格子的两倍,但从第三个格子起,每次都归还给国王一粒米,并由此计算出每个格子实际放置的米的个数.这样一来,第一个格子有一粒米,第二个格子有两粒米.第三个格子如果按照阿基米德的方案,有四粒米;但如果按照小明的方案,由于归还给国王一粒米,就剩下三粒米;第四个格子按照阿基米德的方案有八粒米,但如果按照小明的方案,就只剩下五粒米.“聪明”的国王一看,每个格子上放的米的个数都比阿基米德的方案显著减少了,就同意了小明的要求.如果按照小明的方案,请你计算个格子一共能得到( )粒米.
A. B. C. D.
30.“杨辉三角”是中国古代重要的数学成就,如图是由“杨辉三角”拓展而成的三角形数阵,从第三行起,每一行的第三个数1,,,,构成数列,其前n项和为,则( )
A. B. C. D.
31.我国古代数学著作《九章算术》中记载问题:“今有垣厚十六尺,两鼠对穿,大鼠日一尺,小鼠日半尺,大鼠日增倍,小鼠日自半,问几何日相逢?”,意思是:今有土墙厚尺,两鼠从墙两侧同时打洞,大鼠第一天打洞一尺,小鼠第一天打洞半尺,大鼠之后每天打洞长度比前一天多一倍,小鼠之后每天打洞长度是前一天的一半,问两鼠相逢需要的最少天数为( )
A. B. C. D.
32.大衍数列,来源于《乾坤谱》中对易传“大衍之数五十”的推论.其前10项依次为0,2,4,8,12,18,24,32,40,50,现将大衍数列各数按照如图排列形成一个数表,则该数表中第8行第3个数是( )
A.152 B.480 C.512 D.840
33.大衍数列,来源于中国古代著作《乾坤普》中对易传“大衍之数五十”的推论.其前项为:、、、、、、、、、,通项公式为,若把这个数列排成下侧形状,并记表示第行中从左向右第个数,则的值为( )
A. B.
C. D.
34.高斯是德国著名的数学家,近代数学的奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设,用表示不超过x的最大整数,则称为“高斯函数”,例如:,.已知数列满足,,,若,为数列的前n项和,则( )
A. B. C. D.
35.大衍数列来源于《乾坤谱》中对易传“大衍之数五十”的推论,主要用于解释中国传统文化中的太极衍生原理,数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏的世界数学史上第一道数列题.已知该数列的前10项依次是0,2,4,8,12,18,24,32,40,50,记,,则数列的前20项和是( )
A.110 B.100 C.90 D.80
一、单选题
1.(2022·北京·统考高考真题)设是公差不为0的无穷等差数列,则“为递增数列”是“存在正整数,当时,”的( )
A.充分而不必要条件 B.必要而不充分条件
C.充分必要条件 D.既不充分也不必要条件
2.(2018·广东江门·校联考一模)已知数列的前项和,若,,则的最大值为( )
A.60 B.57 C.54 D.51
3.(2020·北京·统考高考真题)在等差数列中,,.记,则数列( ).
A.有最大项,有最小项 B.有最大项,无最小项
C.无最大项,有最小项 D.无最大项,无最小项
4.(2020·云南昆明·云南民族大学附属中学校考一模)已知数列的前项和满足.若对任意正整数都有恒成立,则实数的取值范围为
A. B. C. D.
5.(2022·浙江·统考高考真题)已知数列满足,则( )
A. B. C. D.
6.(2021·浙江·统考高考真题)已知数列满足.记数列的前n项和为,则( )
A. B. C. D.
7.(2021·全国·统考高考真题)等比数列的公比为q,前n项和为,设甲:,乙:是递增数列,则( )
A.甲是乙的充分条件但不是必要条件
B.甲是乙的必要条件但不是充分条件
C.甲是乙的充要条件
D.甲既不是乙的充分条件也不是乙的必要条件
8.(2021·北京·统考高考真题)《中国共产党党旗党徽制作和使用的若干规定》指出,中国共产党党旗为旗面缀有金黄色党徽图案的红旗,通用规格有五种.这五种规格党旗的长(单位:cm)成等差数列,对应的宽为(单位: cm),且长与宽之比都相等,已知,,,则
A.64 B.96 C.128 D.160
9.(2022·贵州·校联考模拟预测)如图所示的三角形叫“莱布尼兹调和三角形”,它们是由整数的倒数组成,第行有个数且两端的数均为,每个数是它下一行左右相邻的两数的和,如,则第8行第4个数(从左往右数)为( )
A. B. C. D.
10.(2022·河南驻马店·河南省驻马店高级中学校考模拟预测)“中国剩余定理”又称“孙子定理”,1852年英国来华传教士伟烈亚利将《孙子算法》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”,“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1至2022这2022个数中,能被5除余1且被7除余1的数按由小到大的顺序排成一列,构成数列,则此数列的项数为( )
A.58 B.57 C.56 D.55
11.(2022·河南洛阳·新安县第一高级中学校考模拟预测)十二平均律是我国明代音乐理论家和数学家朱载堉发明的,明万历十二年(公元1584年),他写成《律学新说》提出了十二平均律的理论十二平均律的数学意义是:在1和2之间插入11个数使包含1和2的这13个数依次成递增的等比数列,记插入的11个数之和为M,插入11个数后这13个数之和为N,则依此规则,下列说法错误的是( )
A.插入的第8个数为 B.插入的第5个数是插入的第1个数的倍
C. D.
12.(2022·江苏连云港·江苏省赣榆高级中学校考模拟预测)1883年,德国数学家康托提出了三分康托集,亦称康托尔集.下图是其构造过程的图示,其详细构造过程可用文字描述为:第一步,把闭区间平均分成三段,去掉中间的一段,剩下两个闭区间和;第二步,将剩下的两个闭区间分别平均分为三段,各自去掉中间的一段,剩下四段闭区间:,,,;如此不断的构造下去,最后剩下的各个区间段就构成了三分康托集.若经历步构造后,不属于剩下的闭区间,则的最小值是( ).
A.7 B.8 C.9 D.10
一、单选题
1.(2023·四川泸州·泸州老窖天府中学校考模拟预测)已知数列中,,,则数列的前10项和( )
A. B. C. D.2
2.(2023·全国·开滦第二中学校考模拟预测)已知等比数列的前n项和为,若,,且,则实数a的取值范围是( )
A. B. C. D.
3.(2023·甘肃兰州·校考一模) 数列满足,且对任意的都有,则的前100项和为
A. B. C. D.
4.(2022·广东·统考三模)在数学和许多分支中都能见到很多以瑞士数学家欧拉命名的常数、公式和定理,如:欧拉函数()的函数值等于所有不超过正整数n且与n互素的正整数的个数,(互素是指两个整数的公约数只有1),例如:;(与3互素有1、2);(与9互素有1、2、4、5、7、8).记为数列的前n项和,则=( )
A. B. C. D.
5.(2023·山东潍坊·校考一模)已知是数列的前项和,且,(),则下列结论正确的是( )
A.数列为等比数列 B.数列为等比数列
C. D.
6.(2022·河南·安阳一中校联考模拟预测)在数列中,且,则它的前项和( )
A. B. C. D.
7.(2022·贵州贵阳·校联考模拟预测)《孙子算经》一书中有如下问题:“今有五等诸侯,共分橘子60颗,人别加3颗.问:五人各得几何?”其大意为“有5人分60个橘子,他们分得的橘子数构成公差为3的等差数列,问5人各得多少个橘子?”根据上述问题的已知条件,则分得橘子最多的人所得的橘子数为( )
A.15 B.16 C.17 D.18
8.(2022·河北邯郸·统考二模)在我国古代著作《九章算术》中,有这样一个问题:“今有五人分五钱,令上二人与下三人等,问各得几何?”意思是有五个人分五钱,这五人分得的钱数从多到少成等差数列,且得钱最多的两个人的钱数之和与另外三个人的钱数之和相等,问每个人分别分得多少钱.则这个等差数列的公差d=( )
A.- B.- C.- D.-
9.(2023春·上海闵行·高二上海市七宝中学校考开学考试)将数列中的所有项排成如下数阵:
……
已知从第二行开始每一行比上一行多两项,第一列数……,成等差数列,且.从第二行起,每一行中的数按从左到右的顺序均构成以为公比的等比数列,则下列结论错误的为( )
A. B.
C.位于第85列 D.
10.(2023·江苏南通·统考模拟预测)传说国际象棋发明于古印度,为了奖赏发明者,古印度国王让发明者自己提出要求,发明者希望国王让人在他发明的国际象棋棋盘上放些麦粒,规则为:第一个格子放一粒,第二个格子放两粒,第三个格子放四粒,第四个格子放八粒……依此规律,放满棋盘的64个格子所需小麦的总重量大约为( )吨.(1kg麦子大约20000粒,lg2=0.3)
A.105 B.107 C.1012 D.1015
11.(2023春·广西南宁·高二统考开学考试)如图,正方形的边长为5,取正方形各边的中点,,,,作第2个正方形,然后再取正方形各边的中点,,,,作第3个正方形,依此方法一直继续下去.则从正方形开始,连续10个正方形的面积之和等于( )
A. B.
C. D.
12.(2022·北京·北京八十中校考模拟预测)数学源于生活,数学在生活中无处不在!学习数学就是要学会用数学的眼光看现实世界!1906年瑞典数学家科赫构造了能够描述雪花形状的图案,他的做法如下:从一个边长为2的正三角形开始,把每条边分成三等份,然后以各边的中间一段为底边,分别向外作正三角形,再去掉底边(如图①、②、③等).反复进行这一过程,就得到雪花曲线.
不妨记第个图中的图形的周长为,则( )
A. B. C. D.
2024年高考数学艺体生一轮复习高分突破讲义:专题20 椭圆【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版: 这是一份2024年高考数学艺体生一轮复习高分突破讲义:专题20 椭圆【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版,共15页。试卷主要包含了考向解读,知识点汇总,题型专项训练,高考真题及模拟题精选,题型精练,巩固基础等内容,欢迎下载使用。
2024年高考数学艺体生一轮复习高分突破讲义:专题18 直线与方程【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版: 这是一份2024年高考数学艺体生一轮复习高分突破讲义:专题18 直线与方程【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版,共14页。试卷主要包含了考向解读,知识点汇总,题型专项训练,高考真题及模拟题精选,题型精练,巩固基础等内容,欢迎下载使用。
2024年高考数学艺体生一轮复习高分突破讲义:专题17 数列综合应用【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)解析版: 这是一份2024年高考数学艺体生一轮复习高分突破讲义:专题17 数列综合应用【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)解析版,共36页。试卷主要包含了考向解读,知识点汇总,题型专项训练,高考真题及模拟题精选,题型精练,巩固基础等内容,欢迎下载使用。
2024年高考数学艺体生一轮复习高分突破讲义:专题16 等比数列【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版
2024年高考数学艺体生一轮复习高分突破讲义:专题15 等差数列【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版
2024年高考数学艺体生一轮复习高分突破讲义:专题08 函数图像的判断【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版
2024年高考数学艺体生一轮复习高分突破讲义:专题02 复数【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版