- 2024年高考数学艺体生一轮复习高分突破讲义:2024年高考数学全真模拟卷一(新高考)原卷版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:新高考卷03-备战2024年高考高频考点题型精讲+精练(新高考通用)解析版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:新高考卷04-备战2024年高考高频考点题型精讲+精练(新高考通用)解析版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:新高考卷04-备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版 试卷 0 次下载
- 2024年高考数学艺体生一轮复习高分突破讲义:新高考卷05-备战2024年高考高频考点题型精讲+精练(新高考通用)解析版 试卷 0 次下载
2024年高考数学艺体生一轮复习高分突破讲义:新高考卷03-备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版
展开2023年高考全真模拟卷三(新高考卷)
数学
考试时间:120分钟;试卷满分:150分
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题(本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合题目要求)
1.已知集合,,则( )
A. B. C. D.
2.已知复数满足,则的共轭复数( )
A. B. C. D.
3.已知长方体的表面积为62,所有棱长之和为40,则线段的长为( )
A. B. C. D.
4.函数的图象关于直线对称,将f(x)的图象向左平移个单位长度后与函数图象重合,则关于,下列说法正确的是( )
A.函数图象关于对称 B.函数图象关于对称
C.在单调递减 D.最小正周期为
5.我国的航天事业取得了辉煌的成就,归功于中国共产党的坚强领导,这归功于几代航天人的不懈奋斗.中国工程院院士、中国探月工程总设计师、巴中老乡吴伟仁先生就是其中最杰出的代表人物之一,同学们应当好好学习航天人和航天精神.我国发射的第一颗人造地球卫星的运行轨道是以地心(地球的中心)F2为一个焦点的椭圆.已知它的近地点(离地面最近的点)A距地面m千米,远地点(离地面最远的点)B距离地面n千米,并且F2、A、B在同一条直线上,地球的半径为R千米,则卫星运行的轨道的短轴长为( )千米.
A. B. C.2 D.
6.若且,则的最小值为( )
A. B. C. D.
7.设点P在曲线上,点Q在直线y=2x上,则PQ的最小值为
A.2 B.1 C. D.
8.2021年高考结束后小明与小华两位同学计划去老年公寓参加志愿者活动.小明在如图的街道E处,小华在如图的街道F处,老年公寓位于如图的G处,则下列说法正确的个数是( )
①小华到老年公寓选择的最短路径条数为4条
②小明到老年公寓选择的最短路径条数为35条
③小明到老年公寓在选择的最短路径中,与到F处和小华会合一起到老年公寓的概率为
④小明与小华到老年公寓在选择的最短路径中,两人并约定在老年公寓门口汇合,事件A:小明经过F事件B;从F到老年公寓两人的路径没有重叠部分(路口除外),则
A.1个 B.2个 C.3个 D.4个
二、多选题(本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得2分,有选错的得0分。)
9.中国共产党第二十次全国代表大会的报告中,一组组数据折射出新时代十年的非凡成就,数字的背后是无数的付出,更是开启新征程的希望.二十大首场新闻发布会指出近十年我国居民生活水平进一步提高,其中2017年全国居民恩格尔系数为29.39%,这是历史上中国恩格尔系数首次跌破30%.恩格尔系数是由德国统计学家恩斯特·恩格尔提出的,计算公式是“恩格尔系数”.恩格尔系数是国际上通用的衡量居民生活水平高低的一项重要指标,一般随居民家庭收入和生活水平的提高而下降,恩格尔系数达60%以上为贫困,50%~60%为温饱,40%~50%为小康,30%~40%为富裕,低于30%为最富裕.如图是近十年我国农村与城镇居民的恩格尔系数折线图,由图可知( )
A.城镇居民2015年开始进入“最富裕”水平
B.农村居民恩格尔系数的平均数低于32%
C.城镇居民恩格尔系数的第45百分位数高于29%
D.全国居民恩格尔系数等于农村居民恩格尔系数和城镇居民恩格尔系数的平均数
10.在△ABC中,点D,E分别是BC,AC的中点,点O为△ABC内的一点,则下列结论正确的是( )
A.若,则
B.若,则
C.若,则
D.若点O为△ABC的外心,BC=4,则
11.已知圆:,直线:,则下列说法正确的是( )
A.当时,直线与圆相离
B.若直线是圆的一条对称轴,则
C.已知点为圆上的动点,若直线上存在点,使得,则的最大值为
D.已知,,为圆上不同于的一点,若,则的最大值为
12.已知正四面体ABCD的棱长为,其外接球的球心为O.点E满足,,过点E作平面平行于AC和BD,平面分别与该正四面体的棱BC,CD,AD相交于点M,G,H,则( )
A.四边形EMGH的周长为是变化的
B.四棱锥的体积的最大值为
C.当时,平面截球O所得截面的周长为
D.当时,将正四面体ABCD绕EF旋转后与原四面体的公共部分体积为
第II卷(非选择题)
三、填空题(本题共4小题,每小题5分,共20分,其中第16题第一空2分,第二空3分)
13.已知函数是偶函数,则常数的值为__.
14.若P(m,8)是焦点为F的抛物线上的一点,则______.
15.已知函数的定义域,对任意的,,都有,若在上单调递减,且对任意的,恒成立,则的取值范围是______.
16.为满足人民群众便利消费、安全消费、放心消费的需求,某社区农贸市场管理部门规划建造总面积为的新型生鲜销售市场.市场内设蔬菜水果类和肉食水产类店面共80间.每间蔬菜水果类店面的建造面积为,月租费为万元;每间肉食水产店面的建造面积为,月租费为0.8万元.全部店面的建造面积不低于总面积的80%,又不能超过总面积的85%.①两类店面间数的建造方案为_________种.②市场建成后所有店面全部租出,为保证任何一种建设方案平均每间店面月租费不低于每间蔬菜水果类店面月租费的90%,则的最大值为_________万元.
四、解答题(本题共6小题,共70分,其中第16题10分。解答应写出文字说明、证明过程或演算步骤。)
17.(10分)已知数列满足.
(1)证明:是等差数列;
(2)若,求数列的前n项和.
| 不满意 | 满意 | 总计 |
男性 |
| 75 |
|
女性 | 50 |
|
|
总计 |
|
| 200 |
18.(12分)2022年9月23日,以“庆丰收同心共富,迎盛会齐向未来”为主题的第五个中国农民丰收节开幕式在盐城市射阳县海河镇举行.射阳县政府同步开展以“湿地绿城庆丰收、向海图强迎盛会”为主题的农民丰收节系列活动,现从某活动现场的观众中随机抽取200名(其中男性120名),了解他们对该活动的满意情况,得到下表.
(1)根据统计数据完成2×2列联表,并依据小概率值α=0.001的独立性检验,能否认为性别与对活动的满意度有关?
(2)该活动现场还举行了有奖促销活动,凡当天消费每满500元,可抽奖一次.抽奖方案是:从装有3个红球和3个白球(形状、大小、质地完全相同)的抽奖箱里一次性摸出2个球,若摸出2个红球,则可获得80元现金的返现;若摸出1个红球,则可获得40元现金的返现;若没摸出红球,则不能获得任何现金返现.若某观众当天消费1000元,记该观众参加抽奖获得的返现金额为X,求X的分布列和数学期望.
附:,其中.
α | 0.100 | 0.050 | 0.010 | 0.001 |
2.706 | 3.841 | 6.635 | 10.828 |
19.(12分)如图,平面四边形ABCD中,,,.的内角A,B,C的对边分别为a,b,c,且满足.
(1)求四边形ABCD的外接圆半径R;
(2)求内切圆半径r的取值范围.
20.(12分)如图,在直三棱柱中,,,,点P,R分别是棱,CB的中点,点Q为棱上的点,且满足.
(1)证明:平面AQR;
(2)求平面PQR与平面AQR夹角的正切值.
21.(12分)已知双曲线C:的离心率为e,点在C上,,分别为C的左、右顶点,C的右焦点F到渐近线的距离为,过点F的直线l与C交于A,B两点(异于顶点),直线,分别与y轴交于点M,N.
(1)求双曲线C的标准方程;
(2)当时,求以MN为直径的圆的方程.
22.(12分)已知函数.
(1)若,判断的单调性;
(2)当时,不等式恒成立,求正实数a的取值范围.
2024年高考数学艺体生一轮复习高分突破讲义:专题20 椭圆【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版: 这是一份2024年高考数学艺体生一轮复习高分突破讲义:专题20 椭圆【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版,共15页。试卷主要包含了考向解读,知识点汇总,题型专项训练,高考真题及模拟题精选,题型精练,巩固基础等内容,欢迎下载使用。
2024年高考数学艺体生一轮复习高分突破讲义:专题02 复数【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版: 这是一份2024年高考数学艺体生一轮复习高分突破讲义:专题02 复数【艺体生专供—选择填空抢分专题】备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版,共8页。试卷主要包含了考向解读,知识点汇总,题型专项训练,高考真题及模拟题精选,题型精练,巩固基础等内容,欢迎下载使用。
2024年高考数学艺体生一轮复习高分突破讲义:新高考卷05-备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版: 这是一份2024年高考数学艺体生一轮复习高分突破讲义:新高考卷05-备战2024年高考高频考点题型精讲+精练(新高考通用)原卷版,共6页。试卷主要包含了请将答案正确填写在答题卡上,已知数列的前项和为,,,则,已知,且,,,则,有下列几个命题,其中正确的是,已知点,直线,下列结论正确的是等内容,欢迎下载使用。