吉林省长春市绿园区2022-2023学年数学七年级第二学期期末考试模拟试题含答案
展开吉林省长春市绿园区2022-2023学年数学七年级第二学期期末考试模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
考生请注意:
1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题(每小题3分,共30分)
1.如图是甲、乙两个探测气球所在位置的海拔高度(单位:)关于上升时间(单位:)的函数图像.有下列结论:
①当时,两个探测气球位于同一高度
②当时,乙气球位置高;
③当时,甲气球位置高;
其中,正确结论的个数是( )
A.个 B.个 C.个 D.个
2.小苏和小林在如图①所示的跑道上进行米折返跑.在整个过程中,跑步者距起跑线的距离(单位:)与跑步时间(单位:)的对应关系如图②所示.下列叙述正确的是( ).
A.两人从起跑线同时出发,同时到达终点
B.小苏跑全程的平均速度大于小林跑全程的平均速度
C.小苏前跑过的路程大于小林前跑过的路程
D.小林在跑最后的过程中,与小苏相遇2次
3.下列计算正确的是( )
A.3﹣2=1 B.(1﹣)(1+)=﹣1
C.(2﹣)(3+)=4 D.(+)2=5
4.已知点P(a,m),Q(b,n)都在反比例函数y=﹣的图象上,且a<0<b,则下列结论一定正确的是( )
A.m<n B.m>n C.m+n<o D.m+n>0
5.年一季度,华为某销公营收入比年同期增长,年第一季度营收入比年同期增长,年和年第一季度营收入的平均增长率为,则可列方程( )
A. B.
C. D.
6.如图,在R△ABC中,∠ACB=90°,D为斜边AB的中点,动点P从点B出发,沿B→C→A运动,如图(1)所示,设,点P运动的路程为,若与之间的函数图象如图(2)所示,则的值为
A.3 B.4 C.5 D.6
7.已知关于的一元二次方程的一个根是,则的值为( )
A. B. C. D.
8.若正比例函数的图像经过点,则这个图像必经过点( )
A. B. C. D.
9.数学课上,小明同学在练习本的相互平行的横隔线上先画了直线a,度量出∠1=112°,接着他准备在点A处画直线b.若要b∥a,则∠2的度数为( )
A.112° B.88° C.78° D.68°
10.如图,平行四边形 ABCD 中,AD∥BC,AB=BC=CD=AD=4,∠A=∠C=60°,连接 BD,将△BCD 绕点 B 旋转,当 BD(即 BD′)与 AD 交于一点 E,BC(即 BC′)同时与 CD 交于一点 F 时,下列结论正确的是( )
①AE=DF;②∠BEF=60°;③∠DEB=∠DFB;④△DEF 的周长的最小值是4+2
A.①② B.②③ C.①②④ D.①②③④
二、填空题(本大题共有6小题,每小题3分,共18分)
11.在Rt△ABC中,∠C=90°,△ABC的周长为,其中斜边的长为2,则这个三角形的面积为_____________。
12.如图.将平面内Rt△ABC绕着直角顶点C逆时针旋转90°得到Rt△EFC.若AC=2,BC=1,则线段BE的长为__________.
13.若二次根式有意义,则x的取值范围是_____.
14.式子在实数范围内有意义,则 x 的取值范围是_______ .
15.已知一组数据 a,b,c,d的方差是4,那么数据,,, 的方差是________.
16.如图,将直线沿轴向下平移后的直线恰好经过点,且与轴交于点,在x轴上存在一点P使得的值最小,则点P的坐标为 .
三、解下列各题(本大题共8小题,共72分)
17.(8分)如图,设线段AB的中点为C,以AC和CB为对角线作平行四边形AECD、又作平行四边形CFHD、CGKE.
求证:H,C,K三点共线.
18.(8分)如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE
(1)求证:△BEC≌△DFA;
(2)求证:四边形AECF是平行四边形.
19.(8分)(本题满分6分)如图所示的方格地面上,标有编号1、2、3的3
个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地
面完全相同.
(1)一只自由飞行的小鸟,将随意地落在图中所示的方格地面上,求
小鸟落在草坪上的概率;
(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,
则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?
20.(8分)如图1,在等边△ABC中,AB=BC=AC=8cm,现有两个动点E,P分别从点A和点B同时出发,其中点E以1cm/秒的速度沿AB向终点B运动;点P以2cm/秒的速度沿射线BC运动.过点E作EF∥BC交AC于点F,连接EP,FP.设动点运动时间为t秒(0<t≤8).
(1)当点P在线段BC上运动时,t为何值,四边形PCFE是平行四边形?请说明理由;
(2)设△EBP的面积为y(cm2),求y与t之间的函数关系式;
(3)当点P在射线BC上运动时,是否存在某一时刻t,使点C在PF的中垂线上?若存在,请直接给出此时t的值(无需证明),若不存在,请说明理由.
21.(8分)先化简,再求代数式的值,其中.
22.(10分)如图所示,已知△ABC的三个顶点的坐标分别为A(-2,3),B(-6,0),C(-1,0).
(1)请直接写出点B关于点A对称的点的坐标;
(2)将△ABC绕坐标原点O逆时针旋转90°,画出图形,直接写出点B的对应点的坐标;
(3)请直接写出:以A、B、C为顶点的平行四边形的第四个顶点D的坐标.
23.(10分)如图所示,在中,点在上,于,且平分,.
求证:.
24.(12分)如图所示的折线ABC表示从甲地向乙地打长途电话所需的电话费y(元)与通话时间t(分钟)之间的函数关系的图象.
(1)写出y与t之间的函数关系式;
(2)通话2分钟应付通话费多少元?通话7分钟呢?
参考答案
一、选择题(每小题3分,共30分)
1、D
2、D
3、B
4、B
5、D
6、A
7、C
8、B
9、D
10、C
二、填空题(本大题共有6小题,每小题3分,共18分)
11、0.5
12、1
13、x≥
14、x≥1
15、
16、(,0)
三、解下列各题(本大题共8小题,共72分)
17、证明见解析.
18、(1)证明见解析,(2)证明见解析
19、解: (1) 小鸟落在草坪上的概率为。
(2)用树状图列出所有可能的结果:
开始
1 2 3
2 3 1 3 1 2
所以编号为1、2的2个小方格空地种植草坪的概率是。
20、(1)t=;(2)y-t2+4t(0<t≤8);(3)t=时,点C在PF的中垂线上.
21、
22、(1)(2,6);(2)作图见解析,点B'的坐标(0,-6);(3)(-7,3),(3,3),(-5,-3)
23、详见解析
24、(1)当0<t≤3时,y=2.4;当t>3时,y=t-0.6;(2)2.4元;6.4元
2023-2024学年吉林省长春市绿园区七年级上学期期末考试数学模拟试题(含答案): 这是一份2023-2024学年吉林省长春市绿园区七年级上学期期末考试数学模拟试题(含答案),共9页。
2023-2024学年吉林省长春市绿园区九年级上学期期末考试数学模拟试题(含答案): 这是一份2023-2024学年吉林省长春市绿园区九年级上学期期末考试数学模拟试题(含答案),共10页。
2023-2024学年吉林省长春市绿园区八年级上学期期末考试数学模拟试题(含答案): 这是一份2023-2024学年吉林省长春市绿园区八年级上学期期末考试数学模拟试题(含答案),共9页。