上海市浦东新区第一教育署2022-2023学年七下数学期末监测模拟试题含答案
展开这是一份上海市浦东新区第一教育署2022-2023学年七下数学期末监测模拟试题含答案,共6页。试卷主要包含了下列各组长度的线段等内容,欢迎下载使用。
上海市浦东新区第一教育署2022-2023学年七下数学期末监测模拟试题
(时间:120分钟 分数:120分)
学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.关于圆的性质有以下四个判断:①垂直于弦的直径平分弦,②平分弦的直径垂直于弦,③在同圆或等圆中,相等的弦所对的圆周角相等,④在同圆或等圆中,相等的圆周角所对的弦相等,则四个判断中正确的是( )
A.①③ B.②③ C.①④ D.②④
2.在一个不透明的盒子里装有2个红球和1个黄球,每个球除颜色外都相同,从中任意摸出2个球。下列事件中,不可能事件是( )
A.摸出的2个球都是红球
B.摸出的2个球都是黄球
C.摸出的2个球中有一个是红球
D.摸出的2个球中有一个是黄球
3.如图,在平行四边形ABCD中,O是对角线AC,BD的交点,下列结论错误的是( )
A.AB∥CD B.AC=BD C.AB=CD D.OA=OC
4.要使二次根式有意义,则x的取值范围是( )
A.x<3 B.x≤3 C.x>3 D.x≥3
5.甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1.5小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距40千米时,t=或t=,其中正确的结论有( )
A.1个 B.2个 C.3个 D.4个
6.在Rt△ABC中,BC是斜边,∠B=40°,则∠C=( )
A.90° B.60° C.50° D.40°
7.如图,在菱形中,,的垂直平分线交对角线于点,为垂足,连结,则等于( )
A. B. C. D.
8.下列各组长度的线段(单位:)中,成比例线段的是( )
A.1,2,3,4 B.1,2,3,6 C.2,3,4,5 D.1,3,5,10
9.某商店销售一批服装,每件售价150元,可获利25%,求这种服装的成本价.设这种服装的成本价为x元,则得到方程( )
A.=25% B.150﹣x=25% C.x=150×25% D.25%x=150
10.药品研究所开发一种抗菌新药,经过多年的动物实验之后首次用于临床人体试验,测得成人服药后血液中药物浓度(微克/毫升)与服药后的时间(时)之间的函数关系如图所示,则当,的取值范围是( )
A. B. C. D.
11.将一次函数y=4x的图象向上平移3个单位长度,得到图象对应的函数解析式为( )
A.y=4x-3 B.y=2x-6 C.y=4x+3 D.y=-x-3
12.把一元二次方程配方后,下列变形正确的是( )
A. B. C. D.
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13.直线 y=2x+3 与 x 轴相交于点 A,则点 A 的坐标为_____.
14.若□ABCD中,∠A=50°,则∠C=_______°.
15.化简:=_____.
16.如图,直线与x轴、y轴分别交于A,B两点,C是OB的中点,D是AB上一点,四边形OEDC是菱形,则△OAE的面积为________.
17.利用计算机中“几何画板”软件画出的函数和的图象如图所示.根据图象可知方程的解的个数为3个,若m,n分别为方程和的解,则m,n的大小关系是________.
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18.(5分)佳佳某天上午9时骑自行车离开家,17时回家,他有意描绘了离家的距离与时同的变化情况,如图所示.
(1)图象表示了哪两个变量的关系?
(2)10时和11时,他分别离家多远?
(3)他最初到达离家最远的地方是什么时间?离家多远?
(4)11时到13时他行驶了多少千米?
19.(5分)计算:(1);(2)+(3﹣2)(3+2)
20.(8分)已知,如图,在ABCD中,延长DA到点E,延长BC到点F,使得AE=CF,连接EF,分别交AB,CD于点M,N,连接DM,BN.
(1)求证:△AEM≌△CFN;
(2)求证:四边形BMDN是平行四边形.
21.(10分)已知,,求.
22.(10分)请阅读下列材料:
问题:现有5个边长为1的正方形,排列形式如图①,请把它们分割后拼接成一个新的正方形,要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.小东同学的做法是:设新正方形的边长为x(x>0),依题意,割补前后图形的面积相等,有x2=5,解得,由此可知新正方形的边长等于两个小正方形组成的矩形对角线的长,于是,画出如图②所示的分割线,拼出如图③所示的新正方形.
请你参考小东同学的做法,解决如下问题:
现有10个边长为1的正方形,排列形式如图④,请把它们分割后拼接成一个新的正方形,要求:在图④中画出分割线,并在图⑤的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形.(说明:直接画出图形,不要求写分析过程.)
23.(12分)在矩形中,点在上,,,垂足为.
(1)求证:;
(2)若,且,求.
参考答案
一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1、C
2、B
3、B
4、B
5、A
6、C
7、D
8、B
9、A
10、C
11、C
12、A
二、填空题(每题4分,满分20分,将答案填在答题纸上)
13、(−,0)
14、50
15、1
16、
17、
三、解答题 (本大题共7小题,共64分.解答应写出文字说明、证明过程或演算步骤.)
18、(1)图象表示离家距离与时间之间的关系;(2)10时和11时,他分别离家15千米、20千米;(3)他最初到达离家最远的地方是13时,离家30千米;(4)11时到13时他行驶了10千米.
19、(1)﹣;(2)1.
20、证明见解析
21、
22、见解析.
23、(1)见解析;(2)AD=.
相关试卷
这是一份2023-2024学年上海市浦东新区第四教育署数学九上期末联考试题含答案,共8页。试卷主要包含了如图,的直径,弦于,已知二次函数y=,在中,=90〫,,则的值是等内容,欢迎下载使用。
这是一份2023-2024学年上海市浦东新区第一教育署九上数学期末检测模拟试题含答案,共8页。试卷主要包含了下图中,不是中心对称图形的是,抛物线,下列说法正确的是等内容,欢迎下载使用。
这是一份2023-2024学年上海市浦东新区第三教育署数学九上期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,对于二次函数y=4等内容,欢迎下载使用。