2023-2024学年上海市浦东新区第一教育署九上数学期末检测模拟试题含答案
展开学校_______ 年级_______ 姓名_______
注意事项:
1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)
1.不等式组的整数解有( )
A.4 个B.3 个C.2个D.1个
2.若二次函数的x与y的部分对应值如下表,则当时,y的值为
A.5B.C.D.
3.已知点A(x1,y1),B(x2,y2)在双曲线y=上,如果x1<x2,而且x1•x2>0,则以下不等式一定成立的是( )
A.y1+y2>0B.y1﹣y2>0C.y1•y2<0D.<0
4.如图,面积为的矩形在第二象限,与轴平行,反比例函数经过两点,直线所在直线与轴、轴交于两点,且为线段的三等分点,则的值为( )
A.B.
C.D.
5.如图,在Rt△ACB中,∠ACB=90°,∠A=35°,将△ABC绕点C逆时针旋转α角到△A1B1C 的位置,A1B1恰好经过点B,则旋转角α的度数等( )
A.70°B.65°C.55°D.35°
6.如图是二次函数y =ax2+bx + c(a≠0)图象如图所示,则下列结论,①c<0,②2a + b=0;③a+b+c=0,④b2–4ac<0,其中正确的有( )
A.1个B.2个C.3个D.4
7.若函数的图象在其象限内y的值随x值的增大而增大,则m的取值范围是( )
A.m>﹣2B.m<﹣2
C.m>2D.m<2
8.下图中,不是中心对称图形的是( )
A.B.C.D.
9.抛物线,下列说法正确的是( )
A.开口向下,顶点坐标B.开口向上,顶点坐标
C.开口向下,顶点坐标D.开口向上,顶点坐标
10.如图,在□ABCD中,E、F分别是边BC、CD的中点,AE、AF分别交BD于点G、H,则图中阴影部分图形的面积与□ABCD的面积之比为( )
A.7 : 12B.7 : 24C.13 : 36D.13 : 72
二、填空题(每小题3分,共24分)
11.如图,正方形ABOC与正方形EFCD的边OC、CD均在x轴上,点F在AC边上,反比例函数的图象经过点A、E,且,则________.
12.如图,Rt△ABC中,∠ACB=90°,AC=BC=4,D为线段AC上一动点,连接BD,过点C作CH⊥BD于H,连接AH,则AH的最小值为_____.
13.光线从空气射入水中会发生折射现象,发生折射时,满足的折射定律如图①所示:折射率(代表入射角,代表折射角).小明为了观察光线的折射现象,设计了图②所示的实验;通过细管可以看见水底的物块,但从细管穿过的直铁丝,却碰不上物块,图③是实验的示意图,点A,C,B在同一直线上,测得,则光线从空射入水中的折射率n等于________.
14.如图,矩形ABCD中,AB=2,BC=,F是AB中点,以点A为圆心,AD为半径作弧交AB于点E,以点B为圆心,BF为半径作弧交BC于点G,则图中阴影部分面积的差S1﹣S2为_____.
15.学校门口的栏杆如图所示,栏杆从水平位置BD绕O点旋转到AC位置,已知AB⊥BD,CD⊥BD,垂足分别为B,D,AO=4m,AB=1.6m,CO=1m,则栏杆C端应下降的垂直距离CD为__________.
16.使函数有意义的自变量的取值范围是___________.
17.三张完全相同的卡片,正面分别标有数字0,1,2,先将三张卡片洗匀后反面朝上,随机抽取一张,记下卡片上的数字m,放置一边,再从剩余的卡片中随机抽取一张卡片,记下卡片上的数字n,则满足关于x的方程x2+mx+n=0有实数根的概率为______.
18.已知a、b是一元二次方程x2+x﹣1=0的两根,则a+b=_____.
三、解答题(共66分)
19.(10分)装潢公司要给边长为6米的正方形墙面ABCD进行装潢,设计图案如图所示(四周是四个全等的矩形,用材料甲进行装潢;中心区是正方形MNPQ,用材料乙进行装潢).
两种装潢材料的成本如下表:
设矩形的较短边AH的长为x米,装潢材料的总费用为y元.
(1)MQ的长为 米(用含x的代数式表示);
(2)求y关于x的函数解析式;
(3)当中心区的边长不小于2米时,预备资金1760元购买材料一定够用吗?请说明理由.
20.(6分)已知在平面直角坐标系xOy中,抛物线(b为常数)的对称轴是直线x=1.
(1)求该抛物线的表达式;
(2)点A(8,m)在该抛物线上,它关于该抛物线对称轴对称的点为A',求点A'的坐标;
(3)选取适当的数据填入下表,并在如图5所示的平面直角坐标系内描点,画出该抛物线.
21.(6分)某公司经销一种成本为10元的产品,经市场调查发现,在一段时间内,销售量(件)与销售单价( 元/件 )的关系如下表:
设这种产品在这段时间内的销售利润为(元),解答下列问题:
(1)如是的一次函数,求与的函数关系式;
(2)求销售利润与销售单价之间的函数关系式;
(3)求当为何值时,的值最大?最大是多少?
22.(8分)如图,在△ABC中,∠A为钝角,AB=25,AC=39,,求tanC和BC的长.
23.(8分)如图,等腰中, ,点是边上一点,在上取点,使
(1)求证: ;
(2)若,求的长.
24.(8分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资. 已知生产每件产品的成本是40元,在销售过程中发现:当销售单价定为120元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为(元),年销售量为(万件),年获利为(万元)。(年获利=年销售额—生产成本—投资)
(1)试写出与之间的函数关系式;
(2)请通过计算说明,到第一年年底,当取最大值时,销售单价定为多少?此时公司是盈利了还是亏损了?
25.(10分)(1)已知如图1,在中,,,点在内部,点在外部,满足,且.求证:.
(2)已知如图2,在等边内有一点,满足,,,求的度数.
26.(10分)(1)解方程:x2﹣4x﹣3=0
(2)计算:
参考答案
一、选择题(每小题3分,共30分)
1、B
2、D
3、B
4、C
5、A
6、B
7、B
8、D
9、C
10、B
二、填空题(每小题3分,共24分)
11、6
12、2﹣2
13、
14、3﹣
15、0.4m
16、且
17、
18、-1
三、解答题(共66分)
19、(1)(6﹣1x);(1)y=﹣40x1+140x+2;(3)预备资金4元购买材料一定够用,理由见解析
20、(1);(2)(-6,49);(3)答案见解析.
21、(1);(2);(3)当时,的值最大,最大值为9000元
22、tanC=;BC=1
23、(1)见解析;(2).
24、(1);(2)当销售单价为180元,年获利最大,并且第一年年底公司亏损了,还差40万元就可收回全部投资.
25、(1)详见解析;(2)150°
26、(1)x1=2+,x2=2﹣;(2)1
x
y
3
5
3
材料
甲
乙
价格(元/米2)
50
40
15
20
25
30
550
500
450
400
2023-2024学年上海市浦东新区第四教育署数学九上期末联考试题含答案: 这是一份2023-2024学年上海市浦东新区第四教育署数学九上期末联考试题含答案,共8页。试卷主要包含了如图,的直径,弦于,已知二次函数y=,在中,=90〫,,则的值是等内容,欢迎下载使用。
2023-2024学年上海市浦东新区第三教育署数学九上期末监测试题含答案: 这是一份2023-2024学年上海市浦东新区第三教育署数学九上期末监测试题含答案,共8页。试卷主要包含了考生要认真填写考场号和座位序号,对于二次函数y=4等内容,欢迎下载使用。
上海市浦东新区第一教育署2023-2024学年八上数学期末预测试题含答案: 这是一份上海市浦东新区第一教育署2023-2024学年八上数学期末预测试题含答案,共7页。试卷主要包含了下列命题是假命题的是,估计的值在等内容,欢迎下载使用。