人教版九年级上册24.1.1 圆教课课件ppt
展开问题1、经过平面上一个已知点,作已知圆的切线会有怎样的情形?
问题2、经过圆外一点P,如何作已知⊙O的切线?
思考:假设切线PA已作出,A为切点,则∠OAP=90°,连接OP,可知A在怎样的圆上?
在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长
切线与切线长的区别与联系:
(1)切线是一条与圆相切的直线;
(2)切线长是指切线上某一点与切点间的线段的长。
若从⊙O外的一点引两条切线PA,PB,切点分别是A、B,连结OA、OB、OP,你能发现什么结论?并证明你所发现的结论。
证明:∵PA,PB与⊙O相切,点A,B是切点 ∴OA⊥PA,OB⊥PB 即∠OAP=∠OBP=90° ∵ OA=OB,OP=OP ∴Rt△AOP≌Rt△BOP(HL) ∴ PA = PB ∠OPA=∠OPB
试用文字语言叙述你所发现的结论
PA、PB分别切⊙O于A、B
从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
反思:切线长定理为证明线段相等、角相等提 供了新的方法
我们学过的切线,常有 五个 性质:1、切线和圆只有一个公共点;2、切线和圆心的距离等于圆的半径;3、切线垂直于过切点的半径;4、经过圆心垂直于切线的直线必过切点;5、经过切点垂直于切线的直线必过圆心。
6、从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.
证明:∵PA,PB是⊙O的切线,点A,B是切点 ∴PA = PB ∠OPA=∠OPB ∴△PAB是等腰三角形,PM为顶角的平分线 ∴OP垂直平分AB
若延长PO交⊙O于点C,连结CA、CB,你又能得出什么新的结论?并给出证明.
证明:∵PA,PB是⊙O的切线,点A,B是切点 ∴PA = PB ∠OPA=∠OPB ∴PC=PC ∴ △PCA ≌ △PCB ∴AC=BC
例.PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。
(1)写出图中所有的垂直关系
OA⊥PA,OB ⊥PB,AB ⊥OP
(3)写出图中所有的全等三角形
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP
(4)写出图中所有的等腰三角形
△ABP △AOB
(5)若PA=4、PD=2,求半径OA
(2)写出图中与∠OAC相等的角
∠OAC=∠OBC=∠APC=∠BPC
(3)连结圆心和圆外一点
(1)分别连结圆心和切点
反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。
1.切线长定理 从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。
∵PA、PB分别切⊙O于A、B
∴PA = PB ,∠OPA=∠OPB
切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。
2.圆的外切四边形的两组对边的和相等
外切圆圆心:三角形三边垂直平分线的交点。外切圆的半径:交点到三角形任意一个定点的距离。
内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到三角形任意一边的垂直距离。
分析题目已知:如图, △ABC的内切圆⊙O与BC 、CA、 AB 分别相交于点D 、 E 、 F ,且AB=9厘米,BC =14厘米,CA =13厘米,求AF、BD、CE的长。
例.如图所示PA、PB分别切圆O于A、B,并与圆O的切线分别相交于C、D,已知PA=7cm,(1)求△PCD的周长.(2) 如果∠P=46°,求∠COD的度数
过⊙O外一点作⊙O的切线
例1 △ABC的内切圆⊙O与BC、CA、AB分别相切于 点D、E、F,且AB=9cm,BC=14cm,CA=13cm, 求AF、BD、CE的长.
设AF=x(cm), BD=y(cm),CE=z(cm)
∴ AF=4(cm), BD=5(cm), CE=9(cm).
∵ ⊙O与△ABC的三边都相切
∴AF=AE,BD=BF,CE=CD
例.如图,△ABC中,∠C =90º ,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8,求⊙O的半径r.
1.一个三角形有且只有一个内切圆;
2.一个圆有无数个外切三角形;
3.三角形的内心就是三角形三条内角平 分线的交点;
4. 三角形的内心到三角形三边的距离相等。
分析. 试说明圆的外切四边形的两组对边的和相等.
选做题:如图,AB是⊙O的直径,AD、DC、BC是切线,点A、E、B为切点,若BC=9,AD=4,求OE的长.
如图,△ABC的内切圆的半径为r, △ABC的周长为l,求△ABC的面积S.
解:设△ABC的内切圆与三边相切于D、E、F,
连结OA、OB、OC、OD、OE、OF,
则OD⊥AB,OE⊥BC,OF⊥AC.
∴S△ABC=S△AOB+S△BOC +S△AOC
设△ABC的三边为a、b、c,面积为S,则△ABC的内切圆的半径 r=
三角形的内切圆的有关计算
如图,Rt△ABC中,∠C=90°,BC=a,AC=b, AB=c,⊙O为Rt△ABC的内切圆. 求:Rt△ABC的内切圆的半径 r.
设AD= x , BE= y ,CE= r
∵ ⊙O与Rt△ABC的三边都相切
∴AD=AF,BE=BF,CE=CD
解:设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。
如图,Rt△ABC中,∠C=90°,BC=3,AC=4, ⊙O为Rt△ABC的内切圆. (1)求Rt△ABC的内切圆的半径 . (2)若移动点O的位置,使⊙O保持与△ABC的边AC、BC都相切,求⊙O的半径r的取值范围。
解:(1)设Rt△ABC的内切圆与三边相切于D、E、F,连结OD、OE、OF则OA⊥AC,OE⊥BC,OF⊥AB。
在Rt△ABC中,BC=3,AC=4, ∴AB=5
由已知可得四边形ODCE为正方形,∴CD=CE=OD
∴ Rt△ABC的内切圆的半径为1。
(2)如图所示,设与BC、AC相切的最大圆与BC、AC的切点分别为B、D,连结OB、OD,则四边形BODC为正方形。
∴半径r的取值范围为0<r≤3
几何问题代数化是解决几何问题的一种重要方法。
1.既有外接圆,又内切圆的平行四边形是______.2.直角三角形的外接圆半径为5cm,内切圆半径为1cm, 则此三角形的周长是_______.3.⊙O是边长为2cm的正方形ABCD的内切圆,EF切⊙O 于P点,交AB、BC于E、F,则△BEF的周长是_____.
初中数学人教版九年级上册24.2.2 直线和圆的位置关系作业课件ppt: 这是一份初中数学人教版九年级上册24.2.2 直线和圆的位置关系作业课件ppt,共11页。
初中数学人教版九年级上册25.1.1 随机事件多媒体教学ppt课件: 这是一份初中数学人教版九年级上册25.1.1 随机事件多媒体教学ppt课件,共18页。PPT课件主要包含了听一听,议一议,不确定,看一看,练一练,比一比,玩一玩,试一试,想一想,编一编等内容,欢迎下载使用。
人教版九年级上册24.1.1 圆教案配套ppt课件: 这是一份人教版九年级上册24.1.1 圆教案配套ppt课件,共10页。PPT课件主要包含了切线长定理,相关概念,切线长,探究一,几何语言,试一试等内容,欢迎下载使用。