湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
展开湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
一.实数的运算(共2小题)
1.(2023•十堰)计算:|1﹣|+()﹣2﹣(π﹣2023)0.
2.(2021•十堰)计算:cos45°+()﹣1﹣|﹣3|.
二.分式的混合运算(共3小题)
3.(2023•十堰)化简:(1﹣)÷.
4.(2022•十堰)计算:÷(a+).
5.(2021•十堰)化简:(﹣)÷.
三.负整数指数幂(共1小题)
6.(2022•十堰)计算:()﹣1+|2﹣|﹣(﹣1)2022.
四.根与系数的关系(共1小题)
7.(2021•十堰)已知关于x的一元二次方程x2﹣4x﹣2m+5=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)若该方程的两个根都是符号相同的整数,求整数m的值.
五.菱形的判定与性质(共1小题)
8.(2021•十堰)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.
(1)求证:四边形AECF是菱形;
(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.
六.正方形的判定(共1小题)
9.(2023•十堰)如图,▱ABCD的对角线AC,BD交于点O,分别以点B,C为圆心,AC,BD长为半径画弧,两弧交于点P,连接BP,CP.
(1)试判断四边形BPCO的形状,并说明理由;
(2)请说明当▱ABCD的对角线满足什么条件时,四边形BPCO是正方形?
七.四边形综合题(共1小题)
10.(2022•十堰)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB=AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.
(1)如图1,当α=90°时,线段BF与CF的数量关系是 ;
(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;
(3)若α=60°,AB=4,BD=m,过点E作EP⊥BN,垂足为P,请直接写出PD的长(用含有m的式子表示).
八.切线的判定与性质(共2小题)
11.(2022•十堰)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.
(1)求证:FG是⊙O的切线;
(2)若BG=1,BF=3,求CF的长.
12.(2021•十堰)如图,已知AB是⊙O的直径,C为⊙O上一点,∠OCB的角平分线交⊙O于点D,F在直线AB上,且DF⊥BC,垂足为E,连接AD、BD.
(1)求证:DF是⊙O的切线;
(2)若tan∠A=,⊙O的半径为3,求EF的长.
九.列表法与树状图法(共1小题)
13.(2021•十堰)为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为A、B、C、D四个等级,并绘制了如下不完整的统计表和统计图.
等级
成绩(x)
人数
A
90≤x≤100
15
B
80≤x<90
a
C
70≤x<80
18
D
x<70
7
根据图表信息,回答下列问题:
(1)表中a= ;扇形统计图中,C等级所占的百分比是 ;D等级对应的扇形圆心角为 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有 人;
(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.
湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类
参考答案与试题解析
一.实数的运算(共2小题)
1.(2023•十堰)计算:|1﹣|+()﹣2﹣(π﹣2023)0.
【答案】+2.
【解答】解:原式=﹣1+4﹣1
=+2.
2.(2021•十堰)计算:cos45°+()﹣1﹣|﹣3|.
【答案】1.
【解答】解:原式=+3﹣3=1.
二.分式的混合运算(共3小题)
3.(2023•十堰)化简:(1﹣)÷.
【答案】.
【解答】解:原式=•
=•
=.
4.(2022•十堰)计算:÷(a+).
【答案】.
【解答】解:÷(a+)
=÷(+)
=÷=
•
=.
5.(2021•十堰)化简:(﹣)÷.
【答案】.
【解答】解:(﹣)÷
=[]
=
=
=
=.
三.负整数指数幂(共1小题)
6.(2022•十堰)计算:()﹣1+|2﹣|﹣(﹣1)2022.
【答案】.
【解答】解:()﹣1+|2﹣|﹣(﹣1)2022
=3+﹣2﹣1
=.
四.根与系数的关系(共1小题)
7.(2021•十堰)已知关于x的一元二次方程x2﹣4x﹣2m+5=0有两个不相等的实数根.
(1)求实数m的取值范围;
(2)若该方程的两个根都是符号相同的整数,求整数m的值.
【答案】见试题解答内容
【解答】解:(1)根据题意得Δ=(﹣4)2﹣4(﹣2m+5)>0,
解得m>;
所以实数m的取值范围为m>;
(2)设x1,x2是方程的两根,
根据题意得x1+x2=4>0,x1x2=﹣2m+5>0,解得m<,
而m>,
所以m的取值范围为<m<,
因为m为整数,
所以m=1或m=2,
当m=1时,方程两根都是整数;当m=2时,方程两根都不是整数;
所以整数m的值为1.
五.菱形的判定与性质(共1小题)
8.(2021•十堰)如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE、CF.
(1)求证:四边形AECF是菱形;
(2)若CF=2,∠FAC=30°,∠B=45°,求AB的长.
【答案】(1)证明略;
(2)AB的长为.
【解答】解:(1)证明:如图,
在△ABC中,点D是AC的中点,
∴AD=DC,
∵AF∥BC,
∴∠FAD=∠ECD,∠AFD=∠CED,
∴△AFD≌△CED(AAS),
∴AF=EC,
∴四边形AECF是平行四边形,
又EF⊥AC,点D是AC的中点,即EF垂直平分AC,
∴平行四边形AECF是菱形.
(2)如图,过点A作AG⊥BC于点G,
由(1)知四边形AECF是菱形,又CF=2,∠FAC=30°,
∴AF∥EC,AE=CF=2,∠FAE=2∠FAC=60°,
∴∠AEB=∠FAE=60°,
∵AG⊥BC,
∴∠AGB=∠AGE=90°,
∴∠GAE=30°,
∴GE=AE=1,AG=GE=,
∵∠B=45°,
∴∠GAB=∠B=45°,
∴BG=AG=,
∴AB=BG=.
六.正方形的判定(共1小题)
9.(2023•十堰)如图,▱ABCD的对角线AC,BD交于点O,分别以点B,C为圆心,AC,BD长为半径画弧,两弧交于点P,连接BP,CP.
(1)试判断四边形BPCO的形状,并说明理由;
(2)请说明当▱ABCD的对角线满足什么条件时,四边形BPCO是正方形?
【答案】(1)四边形BPCO为平行四边形.理由见解析;
(2)当AC⊥BD,AC=BD时,四边形BPCO为正方形.
【解答】解:(1)四边形BPCO为平行四边形.
理由:∵四边形ABCD为平行四边形,
∴OC=OA=AC,OB=OD=BD,
∵以点B,C为圆心,AC,BD长为半径画弧,两弧交于点P,
∴OB=CP,BP=OC,
∴四边形BPCO为平行四边形;
(2)当AC⊥BD,AC=BD时,四边形BPCO为正方形.
∵AC⊥BD,
∴∠BOC=90°,
∵AC=BD,OB=BD,OC=AC,
∴OB=OC,
∵四边形BPCO为平行四边形,
∴四边形BPCO为正方形.
七.四边形综合题(共1小题)
10.(2022•十堰)已知∠ABN=90°,在∠ABN内部作等腰△ABC,AB=AC,∠BAC=α(0°<α≤90°).点D为射线BN上任意一点(与点B不重合),连接AD,将线段AD绕点A逆时针旋转α得到线段AE,连接EC并延长交射线BN于点F.
(1)如图1,当α=90°时,线段BF与CF的数量关系是 BF=CF ;
(2)如图2,当0°<α<90°时,(1)中的结论是否还成立?若成立,请给予证明;若不成立,请说明理由;
(3)若α=60°,AB=4,BD=m,过点E作EP⊥BN,垂足为P,请直接写出PD的长(用含有m的式子表示).
【答案】(1)BF=CF;
(2)成立,见解答;
(3)6﹣m或0或m﹣6.
【解答】解:(1)BF=CF;理由如下:
连接AF,如图所示:
根据旋转可知,∠DAE=α=90°,AE=AD,
∵∠BAC=90°,
∴∠EAC+∠CAD=90°,∠BAD+∠CAD=90°,
∴∠EAC=∠BAD,
在△ACE和△ABD中,
,
∴△ACE≌△ABD(SAS),
∴∠ACE=∠ABD=90°,
∴∠ACF=90°,
在Rt△ABF与Rt△ACF中,
,
∴Rt△ABF≌Rt△ACF(HL),
∴BF=CF,
故答案为:BF=CF;
(2)成立,理由如下:
如图2,连接AF,
根据旋转可知,∠DAE=α,AE=AD,
∵∠BAC=α,
∴∠EAC﹣∠CAD=α,∠BAD﹣∠CAD=α,
∴∠EAC=∠BAD,
在△ACE和△ABD中,
∴△ACE≌△ABD(SAS),
∴∠ACE=∠ABD=90°,
∴∠ACF=90°,
在Rt△ABF与Rt△ACF中,
,
∴Rt△ABF≌Rt△ACF(HL),
∴BF=CF;
(3)∵α=60°,AB=AC,
∴△ABC为等边三角形,
∴∠ABC=∠ACB=∠BAC=60°,AB=AC=BC=4,
①当∠BAD<60°时,连接AF,如图所示:
∵Rt△ABF≌Rt△ACF,
∴∠BAF=∠CAF=∠BAC=30°,
在Rt△ABF中,=tan30°,
,
即CF=BF=4;
根据(2)可知,△ACE≌△ABD,
∴CE=BD=m,
∴EF=CF+CE=4+m,∠FBC=∠FCB=90°﹣60°=30°,
∴∠EFP=∠FBC+∠FCB=60°,
又∵∠EPF=90°,
∴∠FEP=90°﹣60°=30°,
∴PF=EF=2+m,
∴BP=BF+PF=6+m,
∴PD=BP﹣BD=6﹣m;
②当∠BAD=60°时,AD与AC重合,如图所示:
∵∠DAE=60°,AE=AD,
∴△ADE为等边三角形,
∴∠ADE=60°,
∵∠ADB=90°﹣∠BAC=30°,
∴∠ADE=90°,
∴此时点P与点D重合,PD=0;
③当∠BAD>60°时,连接AF,如图所示:
∵Rt△ABF≌Rt△ACF,
∴∠BAF=∠CAF=∠BAC=30°,
在Rt△ABF中,=tan30°,
,
即CF=BF=4;
根据(2)可知,△ACE≌△ABD,
∴CE=BD=m,
∴EF=CF+CE=4+m,∠FBC=∠FCB=90°﹣60°=30°,
∴∠EFP=∠FBC+∠FCB=60°,
又∵∠EPF=90°,
∴∠FEP=90°﹣60°=30°,
∴PF=EF=2+m,
∴BP=BF+PF=6+m,
∴PD=BD﹣BP=m﹣6,
综上,PD的值为6﹣m或0或m﹣6.
八.切线的判定与性质(共2小题)
11.(2022•十堰)如图,△ABC中,AB=AC,D为AC上一点,以CD为直径的⊙O与AB相切于点E,交BC于点F,FG⊥AB,垂足为G.
(1)求证:FG是⊙O的切线;
(2)若BG=1,BF=3,求CF的长.
【答案】(1)见解析过程;
(2)CF=.
【解答】(1)证明:如图,连接OF,
∵AB=AC,
∴∠B=∠C,
∵OF=OC,
∴∠C=∠OFC,
∴∠OFC=∠B,
∴OF∥AB,
∵FG⊥AB,
∴FG⊥OF,
又∵OF是半径,
∴GF是⊙O的切线;
(2)解:如图,连接OE,过点O作OH⊥CF于H,
∵BG=1,BF=3,∠BGF=90°,
∴FG===2,
∵⊙O与AB相切于点E,
∴OE⊥AB,
又∵AB⊥GF,OF⊥GF,
∴四边形GFOE是矩形,
∴OE=GF=2,
∴OF=OC=2,
又∵OH⊥CF,
∴CH=FH,
∵cosC=cosB=,
∴,
∴CH=,
∴CF=.
12.(2021•十堰)如图,已知AB是⊙O的直径,C为⊙O上一点,∠OCB的角平分线交⊙O于点D,F在直线AB上,且DF⊥BC,垂足为E,连接AD、BD.
(1)求证:DF是⊙O的切线;
(2)若tan∠A=,⊙O的半径为3,求EF的长.
【答案】(1)证明略;
(2)EF的长为.
【解答】解:(1)如图,连接OD,
∵OC=OD,
∴∠ODC=∠OCD,
∵CD平分∠OCB,
∴∠OCD=∠BCD,
∴∠ODC=∠BCD,
∴OD∥CE,
∴∠CEF=∠ODE,
∵CE⊥DF,
∴∠CEF=90°,
∴∠ODE=90°,即OD⊥DF,
∴DF是⊙O的切线;
(2)∵AB是⊙O的直径,
∴∠ADB=90°,
∴tan∠A==,则AD=2BD,
在Rt△ABD中,∠ADB=90°,AB=2r=6,
∴BD2+AD2=AB2,即BD2+(2BD)2=62,
解得BD=,
由(1)知DF是⊙O的切线,
∴∠BDF=∠A,
∵BE⊥DF,
∴∠BEF=90°,
∴tan∠BDF==,则DE=2BE,
在Rt△BDE中,BD=,
由勾股定理可得,BE2+DE2=BD2,即BE2+(2BE)2=()2,
解得BE=,则DE=,
由(1)知BE∥OD,
∴=,即=,解得EF=.
九.列表法与树状图法(共1小题)
13.(2021•十堰)为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为A、B、C、D四个等级,并绘制了如下不完整的统计表和统计图.
等级
成绩(x)
人数
A
90≤x≤100
15
B
80≤x<90
a
C
70≤x<80
18
D
x<70
7
根据图表信息,回答下列问题:
(1)表中a= 20 ;扇形统计图中,C等级所占的百分比是 30% ;D等级对应的扇形圆心角为 42 度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有 450 人;
(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.
【答案】见试题解答内容
【解答】解:(1)抽取的学生人数为:15÷=60(人),
∴a=60﹣15﹣18﹣7=20,C等级所占的百分比是18÷60×100%=30%,D等级对应的扇形圆心角为:360°×=42°,
估计成绩为A等级的学生共有:1800×=450(人),
故答案为:20,30%,42,450;
(2)95分以上的学生有4人,其中甲、乙两人来自同一班级,其他两人记为丙、丁,
画树状图如图:
共有12种等可能的结果,甲、乙两人至少有1人被选中的结果有10种,
∴甲、乙两人至少有1人被选中的概率为=.
陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份陕西省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共30页。试卷主要包含了0+|1﹣|﹣,解方程,解不等式,解不等式组,之间的关系如图所示等内容,欢迎下载使用。
青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类: 这是一份青海省2021-2023三年中考数学真题分类汇编-03解答题(基础题)知识点分类,共13页。试卷主要包含了计算,,其中x=+1,÷,其中a=,解方程,如图,DB是▱ABCD的对角线等内容,欢迎下载使用。
湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类: 这是一份湖北省十堰市2021-2023三年中考数学真题分类汇编-03解答题(提升题)知识点分类,共35页。试卷主要包含了之间的函数关系如图所示,,与y轴交于点A等内容,欢迎下载使用。