终身会员
搜索
    上传资料 赚现金
    英语朗读宝

    (新高考)高考数学一轮复习素养练习 第9章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题 (含解析)

    立即下载
    加入资料篮
    (新高考)高考数学一轮复习素养练习 第9章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题 (含解析)第1页
    (新高考)高考数学一轮复习素养练习 第9章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题 (含解析)第2页
    (新高考)高考数学一轮复习素养练习 第9章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题 (含解析)第3页
    还剩9页未读, 继续阅读
    下载需要15学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    (新高考)高考数学一轮复习素养练习 第9章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题 (含解析)

    展开

    这是一份(新高考)高考数学一轮复习素养练习 第9章 第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题 (含解析),共12页。试卷主要包含了特殊到一般法,直线l与抛物线C,已知椭圆C,已知曲线C等内容,欢迎下载使用。
    第2课时 圆锥曲线中的定值、定点与存在性问题

    考点一 圆锥曲线中的定值问题(综合型)
    探究圆锥曲线的定值问题,常先从特殊情形入手,找到满足题意的定直线方程,再从一般情形进行推理得到关联坐标的等式,验证等式成立即可.
    (2018·高考北京卷)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于M,直线PB交y轴于N.
    (1)求直线l的斜率的取值范围;
    (2)设O为原点,=λ,=μ,求证:+为定值.
    【解】 (1)因为抛物线y2=2px过点(1,2),
    所以2p=4,即p=2.
    故抛物线C的方程为y2=4x.
    由题意知,直线l的斜率存在且不为0.
    设直线l的方程为y=kx+1(k≠0).
    由得k2x2+(2k-4)x+1=0.
    依题意Δ=(2k-4)2-4×k2×1>0,
    解得k<0或0<k<1.
    又PA,PB与y轴相交,
    故直线l不过点(1,-2).
    从而k≠-3.
    所以直线l斜率的取值范围是(-∞,-3)∪(-3,0)∪(0,1).
    (2)证明:设A(x1,y1),B(x2,y2).
    由(1)知x1+x2=-,x1x2=.
    直线PA的方程为y-2=(x-1).
    令x=0,得点M的纵坐标为yM=+2=+2.
    同理得点N的纵坐标为yN=+2.
    由=λ,=μ得λ=1-yM,μ=1-yN.
    所以+=+=+
    =·
    =·=2.
    所以+为定值.

    求圆锥曲线中定值问题常用的方法
    (1)引起变量法:其解题流程为





    (2)特例法:从特殊入手,求出定值,再证明这个值与变量无关. 
     (2020·长沙市统一模拟考试)已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别为F1,F2,A为椭圆C上一点,AF2⊥F1F2,且|AF2|=.
    (1)求椭圆C的方程;
    (2)设椭圆C的左、右顶点分别为A1,A2,过A1,A2分别作x轴的垂线l1,l2,椭圆C的一条切线l:y=kx+m与l1,l2分别交于M,N两点,求证:∠MF1N为定值.
    解:(1)由AF2⊥F1F2,|AF2|=,得=.
    又e==,a2=b2+c2,
    所以a2=9,b2=8,
    故椭圆C的标准方程为+=1.
    (2)证明:由题意可知,l1的方程为x=-3,l2的方程为x=3.
    直线l分别与直线l1,l2的方程联立得M(-3,-3k+m),N(3,3k+m),
    所以=(-2,-3k+m),=(4,3k+m),
    所以·=-8+m2-9k2.
    联立
    得(9k2+8)x2+18kmx+9m2-72=0.
    因为直线l与椭圆C相切,
    所以Δ=(18km)2-4(9k2+8)·(9m2-72)=0,
    化简得m2=9k2+8.
    所以·=-8+m2-9k2=0,
    所以⊥,
    故∠MF1N为定值.
    考点二 圆锥曲线中的定点问题(综合型)
    1.引进参数法:引进动点的坐标或动线中系数为参数表示变化量,再研究变化的量与参数何时没有关系,找到定点.
    2.特殊到一般法:根据动点或动线的特殊情况探索出定点,再证明该定点与变量无关.
    (2020·安徽省考试试题)已知椭圆C:+=1(a>b>0)的上顶点为P,右顶点为Q,直线PQ与圆x2+y2=相切于点M.
    (1)求椭圆C的方程;
    (2)若不经过点P的直线l与椭圆C交于A,B两点,且·=0,求证:直线l过定点.
    【解】 (1)由已知得直线OM(O为坐标原点)的斜率kOM=2,则直线PQ的斜率kPQ=-=-,
    所以直线PQ的方程为y-=-,
    即x+2y=2.可求得P(0,1),Q(2,0),故a=2,b=1,
    故椭圆C的方程为+y2=1.
    (2)证明:当直线l的斜率不存在时,显然不满足条件.
    当直线l的斜率存在时,设l的方程为y=kx+n(n≠1),
    联立消去y整理得(4k2+1)x2+8knx+4(n2-1)=0,
    Δ=(8kn)2-4×4(4k2+1)(n2-1)=16(4k2+1-n2)>0,得4k2+1>n2.①
    设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.②
    由·=0,得(x1,y1-1)·(x2,y2-1)=0,又y1=kx1+n,y2=kx2+n,所以(k2+1)x1x2+k(n-1)(x1+x2)+(n-1)2=0,③
    由②③得n=1(舍),或n=-,满足①.
    此时l的方程为y=kx-,故直线l过定点.

    求解定点问题常用的方法
    (1)“特殊探路,一般证明”,即先通过特殊情况确定定点,再转化为有方向、有目标的一般性证明.
    (2)“一般推理,特殊求解”,即先由题设条件得出曲线的方程,再根据参数的任意性得到定点坐标.
    (3)求证直线过定点(x0,y0),常利用直线的点斜式方程y-y0=k(x-x0)来证明. 
     (2020·武汉模拟)过抛物线C:y2=4x的焦点F且斜率为k的直线l交抛物线C于A,B两点,且|AB|=8.
    (1)求直线l的方程;
    (2)若A关于x轴的对称点为D,求证:直线BD过定点,并求出该点的坐标.
    解:(1)由y2=4x知焦点F的坐标为(1,0),则直线l的方程为y=k(x-1),
    代入抛物线方程y2=4x,得k2x2-(2k2+4)x+k2=0,
    由题意知k≠0,
    且Δ=[-(2k2+4)]2-4k2·k2=16(k2+1)>0.
    设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=1.
    由抛物线的弦长公式知|AB|=x1+x2+2=8,则=6,即k2=1,解得k=±1.
    所以直线l的方程为y=±(x-1).
    (2)证明:由(1)及抛物线的对称性知,D点的坐标为(x1,-y1),
    直线BD的斜率kBD===,
    所以直线BD的方程为y+y1=(x-x1),
    即(y2-y1)y+y2y1-y=4x-4x1.
    因为y=4x1,y=4x2,x1x2=1,所以(y1y2)2=16x1x2=16,
    即y1y2=-4(y1,y2异号).
    所以直线BD的方程为4(x+1)+(y1-y2)y=0,
    对任意y1,y2∈R,有
    解得
    即直线BD恒过定点(-1,0).
    考点三 圆锥曲线中的探索性问题(综合型)
    解决圆锥曲线中的存在性问题,一般是假设符合题设条件的常数、点、直线存在,然后再利用题干条件建立起关于该常数、点、直线的等量关系,如果能求出符合题意的常数、点的坐标、直线方程,则说明存在;否则,由题设推出矛盾,则说明不存在.
    (2019·高考全国卷Ⅰ)已知点A,B关于坐标原点O对称,|AB|=4,⊙M过点A,B且与直线x+2=0相切.
    (1)若A在直线x+y=0上,求⊙M的半径;
    (2)是否存在定点P,使得当A运动时,|MA|-|MP|为定值?并说明理由.
    【解】 (1)因为⊙M过点A,B,
    所以圆心M在AB的垂直平分线上.
    又已知A在直线x+y=0上,
    且A,B关于坐标原点O对称,
    所以M在直线y=x上,故可设M(a,a).
    因为⊙M与直线x+2=0相切,
    所以⊙M的半径为r=|a+2|.
    连接MA,由已知得|AO|=2,又⊥,
    故可得2a2+4=(a+2)2,
    解得a=0或a=4.
    故⊙M的半径r=2或r=6.
    (2)存在定点P(1,0),使得|MA|-|MP|为定值.
    理由如下:
    设M(x,y),由已知得⊙M的半径为r=|x+2|,|AO|=2.
    由于⊥,故可得x2+y2+4=(x+2)2,
    化简得M的轨迹方程为y2=4x.
    因为曲线C:y2=4x是以点P(1,0)为焦点,
    以直线x=-1为准线的抛物线,所以|MP|=x+1.
    因为|MA|-|MP|=r-|MP|=x+2-(x+1)=1,
    所以存在满足条件的定点P.

    存在性问题的求解策略
    解决存在性问题,先假设存在,推证满足条件的结论,若结论正确则存在,若结论不正确则不存在.
    (1)当条件和结论不唯一时要分类讨论.
    (2)当给出结论而要推导出存在的条件时,先假设成立,再推出条件.
    (3)当要讨论的量能够确定时,可先确定,再证明结论符合题意. 
     是否存在过点E(0,-4)的直线l交椭圆+=1于点R,T,且满足·=?若存在,求直线l的方程;若不存在,请说明理由.
    解:存在.
    假设存在满足题意的直线l,易知当直线l的斜率不存在时,·<0,不满足题意.
    故可设直线l的方程为y=kx-4,R(x1,y1),T(x2,y2).
    因为·=,
    所以x1x2+y1y2=.
    由得(3+4k2)x2-32kx+16=0,
    由Δ>0得(-32k)2-64(3+4k2)>0,
    解得k2>.①
    因为x1+x2=,x1x2=,
    所以y1y2=(kx1-4)(kx2-4)=k2x1x2-4k(x1+x2)+16,
    故x1x2+y1y2=+-+16=,
    解得k2=1.②
    由①②解得k=±1,
    所以直线l的方程为y=±x-4.
    故存在直线l:x+y+4=0或x-y-4=0满足题意.

    [基础题组练]
    1.直线l与抛物线C:y2=2x交于A,B两点,O为坐标原点,若直线OA,OB的斜率分别为k1,k2,且满足k1k2=,则直线l过定点(  )
    A.(-3,0)        B.(0,-3)
    C.(3,0) D.(0,3)
    解析:选A.设A(x1,y1),B(x2,y2),因为k1k2=,所以·=.又y=2x1,y=2x2,所以y1y2=6.将直线l:x=my+b代入抛物线C:y2=2x得y2-2my-2b=0,所以y1y2=-2b=6,得b=-3,即直线l的方程为x=my-3,所以直线l过定点(-3,0).
    2.以下四个关于圆锥曲线的命题:
    ①设A,B为两个定点,K为正数,若||PA|-|PB||=K,则动点P的轨迹是双曲线;
    ②方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
    ③双曲线-=1与椭圆+y2=1有相同的焦点;
    ④已知抛物线y2=2px,以过焦点的一条弦AB为直径作圆,则此圆与准线相切.
    其中真命题为________.(写出所有真命题的序号)
    解析:A,B为两个定点,K为正数,||PA|-|PB||=K,当K=|AB|时,动点P的轨迹是两条射线,故①错误;
    方程2x2-5x+2=0的两根为和2,可分别作为椭圆和双曲线的离心率,故②正确;
    双曲线-=1的焦点坐标为(±,0),椭圆+y2=1的焦点坐标为(±,0),故③正确;
    设AB为过抛物线焦点F的弦,P为AB中点,A,B,P在准线l上的射影分别为M,N,Q,
    因为AP+BP=AM+BN,所以PQ=AB,
    所以以AB为直径作圆,则此圆与准线l相切,故④正确.
    故正确的命题有②③④.
    答案:②③④
    3.(2020·福建五校第二次联考)已知椭圆C:+=1(a>b>0)的离心率为,上顶点M到直线x+y+4=0的距离为3.
    (1)求椭圆C的方程;
    (2)设直线l过点(4,-2),且与椭圆C相交于A,B两点,l不经过点M,证明:直线MA的斜率与直线MB的斜率之和为定值.
    解:(1)由题意可得,解得
    所以椭圆C的方程为+=1.
    (2)证明:易知直线l的斜率恒小于0,设直线l的方程为y+2=k(x-4),k<0且k≠-1,A(x1,y1),B(x2,y2),
    联立
    得(1+4k2)x2-16k(2k+1)x+64k(k+1)=0,
    则x1+x2=,x1x2=,
    因为kMA+kMB=+
    =,
    所以kMA+kMB=2k-(4k+4)×=2k-4(k+1)×
    =2k-(2k+1)=-1(为定值).
    4.(2019·高考全国卷Ⅲ)已知曲线C:y=,D为直线y=-上的动点,过D作C的两条切线,切点分别为A,B.
    (1)证明:直线AB过定点;
    (2)若以E为圆心的圆与直线AB相切,且切点为线段AB的中点,求该圆的方程.
    解:(1)证明:设D,A(x1,y1),则x=2y1.
    由于y′=x,所以切线DA的斜率为x1,故=x1.
    整理得2tx1-2y1+1=0.
    设B(x2,y2),同理可得2tx2-2y2+1=0.
    故直线AB的方程为2tx-2y+1=0.
    所以直线AB过定点.
    (2)由(1)得直线AB的方程为y=tx+.由可得x2-2tx-1=0.于是x1+x2=2t,y1+y2=t(x1+x2)+1=2t2+1.
    设M为线段AB的中点,则M.
    由于⊥,而=(t,t2-2),与向量(1,t)平行,所以t+(t2-2)t=0.
    解得t=0或t=±1.
    当t=0时,||=2,所求圆的方程为x2+=4;
    当t=±1时,||=,所求圆的方程为x2+=2.
    [综合题组练]
    1.(2020·广州市调研测试)已知动圆C过定点F(1,0),且与定直线x=-1相切.
    (1)求动圆圆心C的轨迹E的方程;
    (2)过点M(-2,0)的任一条直线l与轨迹E交于不同的两点P,Q,试探究在x轴上是否存在定点N(异于点M),使得∠QNM+∠PNM=π?若存在,求点N的坐标;若不存在,请说明理由.
    解:(1)法一:依题意知,动圆圆心C到定点F(1,0)的距离,与到定直线x=-1的距离相等,
    由抛物线的定义,可得动圆圆心C的轨迹E是以F(1,0)为焦点,x=-1为准线的抛物线,其中p=2.
    所以动圆圆心C的轨迹E的方程为y2=4x.
    法二:设动圆圆心C(x,y),依题意得=|x+1|,
    化简得y2=4x,即为动圆圆心C的轨迹E的方程.
    (2)假设存在点N(x0,0)满足题设条件.
    由∠QNM+∠PNM=π可知,直线PN与QN的斜率互为相反数,即kPN+kQN=0.①
    易知直线PQ的斜率必存在且不为0,设直线PQ:x=my-2,
    由得y2-4my+8=0.
    由Δ=(-4m)2-4×8>0,得m>或m<-.
    设P(x1,y1),Q(x2,y2),则y1+y2=4m,y1y2=8.
    由①得kPN+kQN=+
    ==0,
    所以y1(x2-x0)+y2(x1-x0)=0即,y1x2+y2x1-x0(y1+y2)=0.
    消去x1,x2,得y1y+y2y-x0(y1+y2)=0,
    即y1y2(y1+y2)-x0(y1+y2)=0.
    因为y1+y2≠0,所以x0=y1y2=2,
    所以存在点N(2,0),使得∠QNM+∠PNM=π.
    2.已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),点A在椭圆C上.
    (1)求椭圆C的标准方程;
    (2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同交点M,N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线的方程;若不存在,说明理由.
    解:(1)设椭圆C的焦距为2c,则c=1,
    因为A在椭圆C上,
    所以2a=|AF1|+|AF2|=2,
    所以a=,b2=a2-c2=1,
    所以椭圆C的方程为+y2=1.
    (2)不存在满足条件的直线,证明如下:
    设直线的方程为y=2x+t,
    设M(x1,y1),N(x2,y2),P,Q(x4,y4),MN的中点为D(x0,y0),
    由消去x,
    得9y2-2ty+t2-8=0,
    所以y1+y2=,Δ=4t2-36(t2-8)>0,
    所以y0==,且-3<t<3.
    由=得=(x4-x2,y4-y2),
    所以y1-=y4-y2,y4=y1+y2-=t-,
    又-3<t<3,所以-<y4<-1,
    与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.
    所以不存在满足条件的直线.

    相关试卷

    高中数学高考复习 第40讲圆锥曲线中的定值与定点问题 练习:

    这是一份高中数学高考复习 第40讲圆锥曲线中的定值与定点问题 练习,共23页。试卷主要包含了解答题等内容,欢迎下载使用。

    高中数学高考第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题:

    这是一份高中数学高考第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题,共11页。试卷主要包含了特殊到一般法,直线l与抛物线C,已知椭圆C,已知曲线C等内容,欢迎下载使用。

    高中数学高考2 第2课时 圆锥曲线中的定值、定点与存在性问题:

    这是一份高中数学高考2 第2课时 圆锥曲线中的定值、定点与存在性问题,共20页。

    欢迎来到教习网
    • 900万优选资源,让备课更轻松
    • 600万优选试题,支持自由组卷
    • 高质量可编辑,日均更新2000+
    • 百万教师选择,专业更值得信赖
    微信扫码注册
    qrcode
    二维码已过期
    刷新

    微信扫码,快速注册

    手机号注册
    手机号码

    手机号格式错误

    手机验证码 获取验证码

    手机验证码已经成功发送,5分钟内有效

    设置密码

    6-20个字符,数字、字母或符号

    注册即视为同意教习网「注册协议」「隐私条款」
    QQ注册
    手机号注册
    微信注册

    注册成功

    返回
    顶部
    Baidu
    map