《圆锥曲线中的定点、定值、存在性问题》专项练习
展开备考训练16 圆锥曲线中的定点、定值、存在性问题——大题备考
1.椭圆E:+=1(a>b>0)的左、右焦点分别为F1(-1,0),F2(1,0),左、右顶点分别为A1,A2,P为椭圆E上的动点(不与A1,A2重合),且直线PA1与PA2的斜率的乘积为-.
(1)求椭圆E的方程;
(2)过F2作两条互相垂直的直线l1与l2(均不与x轴重合)分别与椭圆E交于A,B,C,D四点,线段AB,CD的中点分别为M,N,求证:直线MN过定点,并求出该定点坐标.
2.[2020·山东师大附中模拟]已知椭圆C:+=1(a>b>0)的离心率为,左、右焦点分别是F1,F2,椭圆C上短轴的一个端点与两个焦点构成的三角形的面积为.
(1)求椭圆C的方程;
(2)过F1作垂直于x轴的直线l交椭圆C于A,B两点(点A在第二象限),M,N是椭圆上位于直线l两侧的动点,若∠MAB=∠NAB,求证:直线MN的斜率为定值.
3.[2020·山东临沂质量检测]如图,已知点F为抛物线C:y2=2px(p>0)的焦点,过点F的动直线l与抛物线C交于M,N两点,且当直线l的倾斜角为45°时,|MN|=16.
(1)求抛物线C的方程;
(2)试确定在x轴上是否存在点P,使得直线PM,PN关于x轴对称?若存在,求出点P的坐标;若不存在,请说明理由.
4.[2020·山东潍坊学情调研]已知椭圆C:+=1(a>b>0)的左、右焦点分别为F1,F2,|F1F2|=2,过点F1的直线与椭圆C交于A,B两点,延长BF2交椭圆C于点M,△ABF2的周长为8.
(1)求C的离心率及方程;
(2)试问:是否存在定点P(x0,0),使得·为定值?若存在,求x0;若不存在,请说明理由.
5.[2020·山东高考第一次模拟]设中心在原点,焦点在x轴上的椭圆E过点,且离心率为.F为E的右焦点,P为E上一点,PF⊥x轴,⊙F的半径为PF.
(1)求E和⊙F的方程;
(2)若直线l:y=k(x-)(k>0)与⊙F交于A,B两点,与E交于C,D两点,其中A,C在第一象限,是否存在k使|AC|=|BD|?若存在,求l的方程;若不存在,请说明理由.
6.[2020·山东济宁质量检测]已知椭圆E:+=1(a>b>0)的一个焦点为(0,),长轴与短轴的比为21.直线l:y=kx+m与椭圆E交于P、Q两点,其中k为直线l的斜率.
(1)求椭圆E的方程;
(2)若以线段PQ为直径的圆过坐标原点O,问:是否存在一个以坐标原点O为圆心的定圆O,不论直线l的斜率k取何值,定圆O恒与直线l相切?如果存在,求出圆O的方程及实数m的取值范围;如果不存在,请说明理由.
高中数学高考第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题: 这是一份高中数学高考第8讲 第2课时 圆锥曲线中的定值、定点与存在性问题,共11页。试卷主要包含了特殊到一般法,直线l与抛物线C,已知椭圆C,已知曲线C等内容,欢迎下载使用。
高中数学高考2 第2课时 圆锥曲线中的定值、定点与存在性问题: 这是一份高中数学高考2 第2课时 圆锥曲线中的定值、定点与存在性问题,共20页。
专题22 圆锥曲线中的定点、定值、定直线问题 微点4 圆锥曲线中的定点、定值、定直线综合训练试题及答案: 这是一份专题22 圆锥曲线中的定点、定值、定直线问题 微点4 圆锥曲线中的定点、定值、定直线综合训练试题及答案,共41页。试卷主要包含了已知椭圆C,已知椭圆,已知双曲线,已知圆M,已知F1在C上等内容,欢迎下载使用。