上海市奉贤区2023年初三数学中考模拟练习试卷(含答案)
展开
这是一份上海市奉贤区2023年初三数学中考模拟练习试卷(含答案),共10页。试卷主要包含了本试卷含三个大题,共25题,计算,化简分式的结果为 ▲ 等内容,欢迎下载使用。
2022学年九年级数学练习卷 (202305)(完卷时间100分钟,满分150分)考生注意:1.本试卷含三个大题,共25题.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效.2.除第一、二大题外,其余各题如无特别说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤.一、选择题(本大题共6题,每题4分,满分24分)1.下列实数中,有理数是(▲)(A); (B); (C); (D). 2.下列运算正确的是(▲)(A); (B) ; (C) ; (D) .3.下列函数图像中,可能是反比例函数的图像的是(▲)(A) (B) (C) (D) 4.在一次学校的演讲比赛中,7位评委分别给出某位选手的原始评分.评定该选手成绩时,从7个原始评分中去掉一个最高分、一个最低分,得到5个有效评分.5个有效评分与7个原始评分这两组数据相比,一定不变的是(▲)(A)中位数; (B)众数; (C)平均数; (D)方差.5.正方形具有而菱形不一定具有的性质是(▲)(A)对角线相等; (B)对角线互相垂直;(C)对角线平分一组对角; (D)对角线互相平分.6.如图1,矩形ABCD中,AB=1,∠ABD=60°,点O在对角线BD上,圆O经过点C.如果矩形ABCD有2个顶点在圆O内,那么圆O的半径长r的取值范围是(▲)(A)0<r≤1; (B)1<r≤; (C)1<r≤2; (D)<r≤2.二、填空题(本大题共12题,每题4分,满分48分)7.计算: ▲ .8.化简分式的结果为 ▲ .9.如果关于x的方程有两个相等的实数根,那么m的值是 ▲ .10.如果一个二次函数的图像顶点是原点,且它经过平移后能与的图像重合,那么这个二次函数的解析式是 ▲ . 11.如果正比例函数(k是常数,k≠0)的图像经过点(4,-1),那么y 的值随x的增大而 ▲ .(填“增大”或“减小”)12.布袋里有4个小球,分别标注了数字﹣1、0、2、3,这些小球除了标注数字不同外,其它都相同.从布袋里任意摸出一个球,这个球上标注数字恰好是正数的概率是 ▲ .13.图2是某商场2022年四个季度的营业额绘制成的扇形统计图,其中二季度的营业额为100万元,那么该商场全年的营业额为 ▲ 万元.14.如图3,在平行四边形ABCD中,BD为对角线,E是边DC的中点,联结BE.如果设,,那么= ▲ (含、的式子表示).15.在△ABC中,AB=AC,如果BC=10,,那么△ABC的重心到底边的距离为 ▲ .16.如果四边形有一组邻边相等,且一条对角线平分这组邻边的夹角,我们把这样的四边形称为“准菱形”.有一个四边形是“准菱形”,它相等的邻边长为2,这两条边的夹角是90°,那么这个“准菱形”的另外一组邻边的中点间的距离是 ▲ .17.如图4,某电信公司提供了A、B两种方案的移动通讯费用y(元)与通话时间x(元)之间的关系.如果通讯费用为60元,那么A方案与B方案的通话时间相差 ▲ 分钟.18.如图5,在正方形ABCD中,点E、F分别在边AD、AB上,EF⊥CE.将△CDE沿直线CE翻折,如果点D的对应点恰好落在线段CF上,那么∠EFC的正切值是 ▲ . 三、解答题(本大题共7题,满分78分)19.(本题满分10分)计算:. 20.(本题满分10分)解不等式组 将其解集在数轴上表示出来,并写出这个不等式组的整数解. 21.(本题满分10分,每小题满分5分)如图6,在平面直角坐标系xOy中,直线l上有一点A(3,2),将点A先向左平移3个单位,再向下平移4个单位得到点B,点B恰好在直线l上.(1)写出点B的坐标,并求出直线l的表达式;(2)如果点C在y轴上,且∠ABC=∠ACB,求点C的坐标. 22.(本题满分10分,每小题满分5分)图7-1是某地下商业街的入口的玻璃顶,它是由立柱、斜杆、支撑杆组成的支架撑起的,图7-2是它的示意图.经过测量,支架的立柱AB与地面垂直(∠BAC=90°),AB=2.7米,点A、C、M在同一水平线上,斜杆BC与水平线AC的夹角∠ACB=33°,支撑杆DE⊥BC,垂足为E,该支架的边BD与BC的夹角∠DBE=66°,又测得CE=2.2米.(1)求该支架的边BD的长;(2)求支架的边BD的顶端D到地面AM的距离.(结果精确到0.1米)(参考数据:,,,,,) 23.(本题满分12分,每小题满分6分)已知:如图8,在菱形ABCD中,AE⊥BC,AF⊥CD,垂足分别为E、F,射线EF交AD的延长线于点G.(1)求证:CE=CF;(2)如果,求证:. 24.(本题满分12分,每小题满分4分)如图9,在平面直角坐标系中,抛物线与x轴交于点A(1,0)和点B,与y轴交于点C.(1)求该抛物线的表达式和对称轴;(2)联结AC、BC,D为x轴上方抛物线上一点(与点C不重合),如果△ABD的面积与△ABC的面积相等,求点D的坐标;(3)设点P(m,4)(m >0),点E在抛物线的对称轴上(点E在顶点上方),当∠APE=90°,且时,求点E的坐标. 25.(本题满分14分,第(1)小题满分4分,第(2)(3)小题满分5分)在梯形ABCD中,AD//BC,AD=4,∠ABC=90°,BD=BC,过点C作对角线BD的垂线,垂足为E,交射线BA于点F.(1)如图10,当点F在边AB上时,求证:△ABD≌△ECB;(2)如图11,如果F是AB的中点,求FE:EC的值;(3)联结DF,如果△BFD是等腰三角形,求BC的长.
2022学年度九年级数学练习卷参考答案及评分说明(202305)一、选择题:(本大题共6题,每题4分,满分24分)1.B; 2.D ; 3.C ; 4.A ; 5.A ; 6.B .二、填空题:(本大题共12题,每题4分,满分48分)7. ; 8. ;9. 1 ; 10. ; 11.减小; 12. ; 13.; 14. ; 15. 4;16.; 17.30; 18.2. 三、解答题(本大题共7题,其中19-22题每题10分,23、24题每题12分,25题14分,满分78分)19.解:原式=·······················································(每一项各2分,共8分).······················································(2分)20.解不等式(1)得.················································(3分)解不等式(2)得.·················································(3分)解集在数轴上正确表示.·············································(2分)所以,不等式组的解集是:.·········································(1分)它的整数解是0,1,2···············································(1分)21.(1)解:由题意得点B的坐标为(0,-2).····························(2分)设直线l的表达式为:. ∵直线l经过点A、B,∴代入得 解得 ·················································(2分)∴直线l的表达式是. ··············································(1分)(2)过点A作轴,垂足为H. ∵∠ABC=∠ACB,∴AB=AC.∴.·······································(2分)∵点B的坐标为(0,-2),点A的坐标为(3,2), ∴点H的坐标为(0,2),BH=4,∴CH=4.·······························(1分)∵点C在y轴上,∴点C的坐标为(0,6).·····························(2分) 22.(1)由题意得,∠BAC=90°,AB=2.7米,∠ACB=33°,∠DBE=66°,CE=2.2米,DE⊥BC.在Rt△ABC中,∠BAC=90°,,即(米).······················································(2分)∴(米).······················································(1分)在Rt△BED中,∠BED=90°,,即(米).······················································(2分)答:该支架的边BD的长7米. (2)过点D作DH⊥AM,垂足为H,过点B作BF⊥DH,垂足为F.···················(1分)∵BF//AM,∴∠FBC=∠ACB.∵∠ACB=33°,∴∠FBC=33°.∵∠DBE=66°,∴∠DBF=33°.·······································(1分)在Rt△DBF中,∠DFB=90°,,即(米).·······················································(2分)∵FH=AB=2.7(米),∴(米).······················································(1分)答:支架的边BD的顶端D到地面AM的距离为6.5米. 23. 解:(1)∵四边形ABCD是菱形,∴AB=AD,∠B=∠ADF. ∵AE⊥BC,AF⊥CD,垂足分别为E、F,∴. ∴.····························································(3分)∴BE=DF.························································(1分)∵四边形ABCD是菱形,∴BC=DC.∴BC-BE=DC-DF,即CE=CF.···········································(2分)(2)∵,∴. ∵∠G=∠G,∴△GDF∽△GFA.∴∠GFD=∠GAF.·························(1分)∵AD//BC,∴. ∵CE=CF,∴DF=DG. ∴∠GFD=∠G.···································(1分)∴∠G=∠GAF. ∵,∴∠BAE=∠GAF.∴∠BAE=∠G. ∵AD//BC,∴∠AEB=∠GAE.∴△AEG∽△EBA.·················································(2分)∴.∵AE=AF,∴.····················································(2分) 24.解:(1)∵抛物线与x轴交于点A(1,0),∴代入得, 解得 . ·············································(2分)∴抛物线的表达式是. 该抛物线的对称轴是直线x=-1. ······································(2分)(2)∵抛物线与y轴交于点C,∴C(0,3).····························(1分)∵△ABD的面积与△ABC的面积相等,∴点C到x轴的距离等于点D到x轴的距离.∴点C与点D关于抛物线的对称轴对称.·······························(2分)∵点D在x轴上方的抛物线上,∴点D的坐标(-2,3).··········································(1分)(3)过点P作对称轴的垂线,垂足为点H,作x轴的垂线,垂足为点G.∵∠APE=∠GPH=90°,∴∠EPH=∠APG. ∵∠EHP=∠AGP=90°,∴△EHP∽△AGP.······························(1分)∴.∵,GP=4,∴.···················································(1分)∵点A到对称轴的距离是2,∴.∴,∴E的纵坐标是.···············································(1分)∴点E的坐标(-1,).···············································(1分) 25.解:(1)∵CF⊥BD ,∴∠CEB=90°.·····································(1分)∵AD//BC,∠ABC=90°,∴∠A=90°,∠ADB=∠CBE.··························(1分)∴∠CEB=∠A.······················································(1分)∵BD=BC,∴△ABD≌△ECB.············································(1分)(2)过点F作FG//AD,交BD于点G.设BC=BD=m,∵FG//AD,∴ (1分)∵点F是AB的中点,AD=4,∴∴FG=2,BG=······················································(1分)∵△ABD≌△ECB,∴BE=AD=4. ∴EG=.·································(1分)∵AD//BC,∴FG//BC. ∴.···········································(1分)即. 解得m= ∴. (1分)(3)①如图1,当BF=DF时, ∵FC⊥BD,∴∠FEB=∠FED=90°. ∴BE=DE.∴BC=DC.∴△BDC是等边三角形.∴∠DBC=60°.∴∠ABD=30°.∴BD=2AD=8.∴BC=8.··························································(2分)②如图2,当BF=BD时,∵ BD=BC,∴BF=BC.∵CF⊥BD,∠FBC=90°,∴∠FBE=∠CBE =45°.∵∠BAD=90°,∴AD=AB=4.∴BC=BD=.························································(2分)③如图3,当DF=BD时,设AD和EC的交点为点H,BC=BD=a,∵FD=BD,∠DAB=90°,∴AF=AB.∵AD//AB,∴∴AH= ∴DH=∵ 即解得a= ∴BC=.·····················································(1分)综上所述,如果△BFD是等腰三角形,BC=8、或
相关试卷
这是一份2023年上海市奉贤区中考数学一模试卷(含答案解析),共18页。
这是一份2023年上海市奉贤区中考数学模拟试卷(含答案),共9页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
这是一份2023年上海市奉贤区中考数学一模试卷含答案,共8页。