所属成套资源:人教部编版九年级全一册配套同步练习
- 56图形的相似和比例线段--知识讲解(基础) 学案 0 次下载
- 61相似多边形及位似--知识讲解 学案 0 次下载
- 62《相似》全章复习与巩固-- 知识讲解(基础) 学案 1 次下载
- 64锐角三角函数—知识讲解 学案 0 次下载
- 65解直角三角形及其应用--知识讲解 学案 0 次下载
63《相似》全章复习与巩固--知识讲解(提高)
展开
这是一份63《相似》全章复习与巩固--知识讲解(提高),共10页。
《相似》全章复习与巩固--知识讲解(提高) 【学习目标】1、了解比例的基本性质,线段的比、成比例线段;
2、通过具体实例认识图形的相似,探索相似图形的性质,理解相似多边形对应角相等、 对 应边成比例、周长的比等于相似比、面积的比等于相似比的平方,探索并掌握相似三角形的判定方法,并能利用这些性质和判定方法解决生活中的一些实际问题;
3、了解图形的位似,能够利用位似将一个图形放大或缩小,在同一直角坐标系中,感受位似变换后点的坐标的变化;
4、结合相似图形性质和判定方法的探索和证明,进一步培养推理能力,发展逻辑思维能力和推理论证的表达能力,以及综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】 【要点梳理】要点一、相似图形及比例线段1.相似图形:在数学上,我们把形状相同的图形称为相似图形(similar figures).要点诠释:
(1) 相似图形就是指形状相同,但大小不一定相同的图形;
(2) “全等”是“相似”的一种特殊情况,即当“形状相同”且“大小相同”时,两 个图形全等;2.相似多边形如果两个多边形的对应角相等,对应边的比相等,我们就说它们是相似多边形.要点诠释:(1)相似多边形的定义既是判定方法,又是它的性质.(2)相似多边形对应边的比称为相似比.3. 比例线段:对于四条线段a、b、c、d,如果其中两条线段的比与另两条线段的比相等,如a:b=c:d,我们就说这四条线段是成比例线段,简称比例线段.要点诠释:(1)若a:b=c:d ,则ad=bc;(d也叫第四比例项)(2)若a:b=b:c ,则 =ac(b称为a、c的比例中项).要点二、相似三角形相似三角形的判定:判定方法(一):平行于三角形一边的直线和其他两边相交,所构成的三角形和原三角形相似.判定方法(二):如果两个三角形的三组对应边的比相等,那么这两个三角形相似. 判定方法(三):如果两个三角形的两组对应边的比相等,并且相应的夹角相等,那么这两个三角形相似.要点诠释:
此方法要求用三角形的两边及其夹角来判定两个三角形相似,应用时必须注意这个角必须是两边的夹角,否则,判断的结果可能是错误的.判定方法(四):如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似.
要点诠释:
要判定两个三角形是否相似,只需找到这两个三角形的两个对应角相等即可,对于直角三角形而言,若有一个锐角对应相等,那么这两个三角形相似.相似三角形的性质:(1)相似三角形的对应角相等,对应边的比相等;(2)相似三角形中的重要线段的比等于相似比; 相似三角形对应高,对应中线,对应角平分线的比都等于相似比.要点诠释:要特别注意“对应”两个字,在应用时,要注意找准对应线段.(3) 相似三角形周长的比等于相似比;(4)相似三角形面积的比等于相似比的平方。3.相似多边形的性质: (1)相似多边形的对应角相等,对应边的比相等.(2)相似多边形的周长比等于相似比.(3)相似多边形的面积比等于相似比的平方.要点三、位似1.位似图形定义: 如果两个图形不仅是相似图形,而且每组对应点所在的直线都经过同一点,那么这样的两个图形叫做位似图形,这个点叫做位似中心.2.位似图形的性质:(1)位似图形的对应点和位似中心在同一条直线上;
(2) 位似图形的对应点到位似中心的距离之比等于相似比;
(3)位似图形中不经过位似中心的对应线段平行.要点诠释:(1)位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.(2)位似变换中对应点的坐标变化规律:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.
要点四、黄金分割1.定义:如图,将一条线段AB分割成大小两条线段AP、PB,若小段与大段的长度之比等于大段的长度与全长之比,即(此时线段AP叫作线段PB、AB的比例中项),则P点就是线段AB的黄金分割点(黄金点),这种分割就叫黄金分割. 2.黄金三角形:顶角为36°的等腰三角形,它的底角为72°,恰好是顶角的2倍,人们称这种三角形为黄金三角形.黄金三角形性质:底角平分线将其腰黄金分割.要点五、射影定理在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∴△ABC∽△ACD∽△CBD(“角角”)∴; ; (射影定理); (等积). 【典型例题】类型一、相似三角形1. 已知:如图,∠ABC=∠CDB=90°,AC=a,BC=b,当BD与a、b之间满足怎样的关系时,这两个三角形相似?【答案与解析】∵AC=a,BC=b, ∴AB=,①当△ABC∽△BDC时, ,即.②当△ABC∽△CDB时, ,即.【总结升华】相似三角形中未明确对应点和对应边时,要注意分类讨论.举一反三【变式】如图,在矩形ABCD中,AB=6,BC=8,沿直线MN对折,使A、C重合,直线MN交AC于O.(1)求证:△COM∽△CBA; (2)求线段OM的长度.【答案】(1)证明: A与C关于直线MN对称,∴ACMN,∴∠COM=90°,在矩形ABCD中,∠B=90°,∴∠COM=∠B ,又∠ACB=∠ACB,∴△COM∽△CBA ,(2)在Rt△CBA中,AB=6,BC=8,∴AC=10 ,∴OC=5,△COM∽△CBA, ∴,∴OM=. 2. 如图,在△ABC中,∠C=90°,将△ABC沿直线MN翻折后,顶点C恰好落在AB边上的点D处,已知MN∥AB,MC=6,NC=,则四边形MABN的面积是( )A. B. C. D. 【答案】C;【解析】由MC=6,NC=,∠C=90°得S△CMN=,再由翻折前后△CMN≌△DMN得对应高相等;由MN∥AB得△CMN∽△CAB且相似比为1:2,故两者的面积比为1:4,从而得S△CMN:S四边形MABN=1:3,故选C.【总结升华】本题综合考查了直角三角形的面积算法、翻折的性质、由平行得相似的三角形相似的判定方法、相似图形的面积比等于相似比的平方等一些类知识点.知识点丰富;考查了学生综合运用知识来解决问题的能力.难度较大. 类型二、相似三角形的综合应用3.(2015•上海)已知,如图,平行四边形ABCD的对角线相交于点O,点E在边BC的延长线上,且OE=OB,连接DE.(1)求证:DE⊥BE;(2)如果OE⊥CD,求证:BD•CE=CD•DE.【答案与解析】证明:(1)∵四边形ABCD是平行四边形,∴BO=BD,∵OE=OB,∴OE=BD,∴∠BED=90°,∴DE⊥BE; (2)∵OE⊥CD∴∠CEO+∠DCE=∠CDE+∠DCE=90°,∴∠CEO=∠CDE,∵OB=OE,∴∠DBE=∠CDE,∵∠BED=∠BED,∴△BDE∽△DCE,∴,∴BD•CE=CD•DE.【总结升华】本题考查了相似三角形的判定和性质,直角三角形的判定和性质,平行四边形的性质,熟记定理是解题的关键.4. (2016•杭州)如图,在△ABC中,点D,E分别在边AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且.(1)求证:△ADF∽△ACG;(2)若,求的值.【思路点拨】(1)欲证明△ADF∽△ACG,由可知,只要证明∠ADF=∠C即可.(2)利用相似三角形的性质得到=,由此即可证明.
【答案与解析】
(1)证明:∵∠AED=∠B,∠DAE=∠DAE,∴∠ADF=∠C,∵=,∴△ADF∽△ACG.(2)解:∵△ADF∽△ACG,∴=,又∵=,∴=,∴=1.【总结升华】本题考查相似三角形的性质和判定、三角形内角和定理等知识,记住相似三角形的判定方法是解决问题的关键,属于基础题中考常考题型.举一反三:【变式】(2015•湘潭)如图,在Rt△ABC中,∠C=90°,△ACD沿AD折叠,使得点C落在斜边AB上的点E处.(1)求证:△BDE∽△BAC;(2)已知AC=6,BC=8,求线段AD的长度.【答案与解析】
证明:(1)∵∠C=90°,△ACD沿AD折叠,∴∠C=∠AED=90°,∴∠DEB=∠C=90°,∵∠B=∠B,∴△BDE∽△BAC;(2)由勾股定理得,AB=10.由折叠的性质知,AE=AC=6,DE=CD,∠AED=∠C=90°.∴BE=AB﹣AE=10﹣6=4,在Rt△BDE中,由勾股定理得,DE2+BE2=BD2,即CD2+42=(8﹣CD)2,解得:CD=3,在Rt△ACD中,由勾股定理得AC2+CD2=AD2,即32+62=AD2,解得:AD=.5. 如图,已知在梯形ABCD中,AD//BC,AD=2,BC=4,点M是AD的中点,△MBC是等边三角形.(1)求证:梯形ABCD是等腰梯形.(2)动点P、Q分别在线段BC和MC上运动,且∠MPQ=60°保持不变.设PC=x,MQ=y,求y与x的函数关系式.【答案与解析】(1)∵是等边三角形∴∵是中点,∴,∵,∴,∴,∴, ∴梯形是等腰梯形.(2)在等边中,又∵,∴,∴,∴, ∴,∵ ∴ ,∴ , ∴. 【总结升华】利用相似三角形得到的比例式,构建线段关系求得函数关系,关键是能够灵活运用所学知识来解题.举一反三【变式】如图所示,在Rt△ABC中,∠A=90°,AB=8,AC=6.若动点D从点B出发,沿线段BA运动到点A为止,运动速度为每秒2个单位长度.过点D作DE∥BC交AC于点E,设动点D运动的时间为x秒,AE的长为y.
(1)求出y关于x的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,△BDE的面积S有最大值,最大值为多少?
【答案】(1)因为DE∥BC,所以△ADE∽△ABC,
所以.
又因为AB=8,AC=6,,,
所以,即,
自变量x的取值范围为.
(2)
.
所以当时,S有最大值,且最大值为6.
类型三、黄金分割6.如图,用纸折出黄金分割点:裁一张正方的纸片ABCD,先折出BC的中点E,再折出线段AE,然后通过折叠使EB落到线段EA上,折出点B的新位置B′,因而EB′=EB.类似地,在AB上折出点B″使AB″=AB′.这是B″就是AB的黄金分割点.请你证明这个结论.【答案与解析】设正方形ABCD的边长为2,
E为BC的中点,
∴BE=1
∴AE=,
又B′E=BE=1,
∴AB′=AE-B′E=-1,
∵AB″=AB′=-1∴AB″:AB=(-1):2
∴点B″是线段AB的黄金分割点.【总结升华】本题考查了黄金分割的应用,知道黄金比并能求出黄金比是解题的关键.举一反三
【变式】如图,已知△ABC中,D是AC边上一点,∠A=36°,∠C=72°,∠ADB=108°.
求证:(1)AD=BD=BC; (2)点D是线段AC的黄金分割点.【答案】(1)∵∠A=36°,∠C=72°,
∴∠ABC=72°,∠ADB=108°,
∴∠ABD=36°,
∴△ADB、△BDC是等腰三角形,
∴AD=BD=BC.(2)∵∠DBC=∠A=36°,∠C=∠C,
∴△ABC∽△BDC,
∴BC:AC=CD:BC,
∴BC2=AC•DC,
∵BC=AD,
∴AD2=AC•DC,
∴点D是线段AC的黄金分割点.