![中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)01](http://img-preview.51jiaoxi.com/2/3/14280011/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)02](http://img-preview.51jiaoxi.com/2/3/14280011/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)03](http://img-preview.51jiaoxi.com/2/3/14280011/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)
展开中考数学三轮冲刺《四边形》解答题冲刺练习11
1.如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.
求证:DA=DE.
2.如图,已知D是△ABC的边AB上一点,CE∥AB,DE交AC于点O,且OA=OC.猜想线段CD与线段AE的位置关系和大小关系,并加以证明.
3.如图,在矩形ABCD中,对角线AC、BD相交于点O.
(1)画出△AOB平移后的三角形,其平移的方向为射线AD的方向,平移的距离为线段AD的长;
(2)观察平移后的图形,除了矩形ABCD外还有哪一种特殊的平行四边形?并给出证明.
4.如图,在四边形ABCD中,AD∥BC,E是BC的中点,AC平分∠BCD,且AC⊥AB,接DE,交AC于F.
(1)求证:AD=CE;
(2)若∠B=60°,试确定四边形ABED是什么特殊四边形?请说明理由.
5.如图,在Rt△ABC中,∠ACB=90°,D为AB的中点,且AE∥CD,CE∥AB.
(1)证明:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求菱形ADCE的高.(计算结果保留根号)
6.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE.
求证:四边形BCDE是矩形.
7.如图,矩形ABCD的对角线AC,BD交于点O,以OC,OD为邻边作平行四边形OCED,连接OE.
(1)求证:四边形OBCE是平行四边形;
(2)连接BE交AC于点F.若AB=2,∠AOB=60°,求BF的长.
8.将矩形ABCD折叠使A,C重合,折痕交BC于E,交AD于F,
(1)求证:四边形AECF为菱形;
(2)若AB=4,BC=8,求菱形的边长;
(3)在(2)的条件下折痕EF的长.
9.如图,自矩形ABCD的顶点C作CE⊥BD,E为垂足,延长EC至F,使CF=BD,连接AF,求∠BAF的大小.
10.如图①,在正方形ABCD中,P是对角线AC上的一点,点E在BC的延长线上,且PE=PB.
(1)求证:△BCP≌△DCP;
(2)求证:∠DPE=∠ABC;
(3)把正方形ABCD改为菱形,其他条件不变(如图②),若∠ABC=58°,则∠DPE=________°.
0.中考数学三轮冲刺《四边形》解答题冲刺练习11(含答案)答案解析
一 、解答题
1.证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠E=∠BAE,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠E=∠DAE,
∴DA=DE.
2.解:线段CD与线段AE的位置关系和大小关系是平行且相等.
证明:∵CE∥AB,
∴∠ADO=∠CEO,∠DAO=∠ECO.
又∵OA=OC,
∴△ADO≌△CEO,
∴AD=CE,
∴四边形ADCE是平行四边形,
∴CD∥AE,CD=AE.
3.解:(1)如图所示;
(2)四边形OCED是菱形.
理由:∵△DEC由△AOB平移而成,
∴AC∥DE,BD∥CE,OA=DE,OB=CE,
∴四边形OCED是平行四边形.
∵四边形ABCD是矩形,
∴OA=OB,
∴DE=CE,
∴四边形OCED是菱形.
4.证明:(1)连接,∵AC平分∠BCD,
∴∠BCA=∠DCA,
∵AD∥BC,
∴∠DCA=∠DAC,
∴AD=CD,
∵AB⊥AC,E是BC的中点,
∴AE=CE=BE=0.5BC,
∴DE⊥AC,AF=CF,
∴∠AFD=∠CFE=90°,
∴△AFD≌△CFE,
∴AD=CE,
(2)当∠B=60°,时,四边形ABED是菱形,
∵AB⊥AC,DE⊥AC,
∴AB∥DE,
∴四边形AECF是平行四边形,
∵AE=BE,∠B=60°,
∴△ABE是等边三角形,
∴AB=BE
∴平行四边形AECF是菱形.
5.(1)证明:∵AE∥CD,CE∥AB,
∴四边形ADCE是平行四边形,
又∵∠ACB=90°,D是AB的中点,
∴CD=AB=BD=AD,
∴平行四边形ADCE是菱形;
(2)解:过点D作DF⊥CE,垂足为点F,如图所示:
DF即为菱形ADCE的高,
∵∠B=60°,CD=BD,
∴△BCD是等边三角形,
∴∠BDC=∠BCD=60°,CD=BC=6,
∵CE∥AB,
∴∠DCE=∠BDC=60°,
又∵CD=BC=6,
∴在Rt△CDF中,DF=3.
6.证明:∵AC=AB,AD=AE,∠BAD=∠CAE,
∴∠BAD﹣∠CAB=∠CAE﹣∠CAB,即∠CAD=∠BAE.
∴△ADC≌△AEB(SAS).
∴DC=BE.
又∵DE=BC,
∴四边形BCDE是平行四边形.
连接BD,CE.
∵AB=AC,AD=AE,∠BAD=∠CAE,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∴四边形BCDE是矩形.
7.证明:(1)∵四边形ABCD是矩形,
∴OA=OB=OC=OD,
∵四边形OCED是平行四边形,
∴四边形OCED为菱形,
∴CE∥OB,CE=OB,
∴四边形OBCE为平行四边形;
(2)解:过F作FM⊥BC于M,过O作ON⊥BC于N,
∵FM⊥BC,ON⊥BC,
∴ON∥FM,
∵AO=OC,
∴ON=AB=1,
∵OF=FC,
∴FM=ON=,
∵∠AOB=60°,OA=OB,
∴∠OAB=60°,∠ACB=30°,
在 Rt△ABC中:
∵AB=2,∠ACB=30°,
∴BC=2,
∵∠ACB=30°,FM=,∴CM=,
∴BM=BC﹣CM=,
∴BF=.
8.证明:(1)∵矩形ABCD折叠使A,C重合,折痕为EF,
∴OA=OC,EF⊥AC,EA=EC,
∵AD∥AC,
∴∠FAC=∠ECA,
在△AOF和△COE中,
∴△AOF≌△COE,
∴OF=OE,
∵OA=OC,AC⊥EF,
∴四边形AECF为菱形;
(2)①设菱形的边长为x,则BE=BC﹣CE=8﹣x,AE=x,
在Rt△ABE中,∵BE2+AB2=AE2,
∴(8﹣x)2+42=x2,解得x=5,
即菱形的边长为5;
②在Rt△ABC中,AC=4,
∴OA=AC=2,
在Rt△AOE中,AE=5,
OE=,
∴EF=2OE=2.
9.解:如图,连接AC,
则AC=BD=CF,所以∠F=∠5
而且∠1=∠3﹣∠4
=∠6﹣∠7
=∠BEF+∠F﹣∠7
=90°﹣∠7+∠F
=∠1+∠F
=∠3+∠5
=∠2
∴∠4=∠2=45°,
∴∠BAF的度数为45°.
10.证明:(1)在正方形ABCD中,BC=DC,∠BCP=∠DCP=45°.
在△BCP和△DCP中,
∴△BCP≌△DCP(SAS).
(2)证明:如图,由(1)知,△BCP≌△DCP,
∴∠CBP=∠CDP.
∵PE=PB,
∴∠CBP=∠E,
∴∠CDP=∠E.
又∵∠1=∠2(对顶角相等),
∴180°﹣∠1﹣∠CDP=180°﹣∠2﹣∠E,即∠DPE=∠DCE.
∵AB∥CD,
∴∠DCE=∠ABC,
∴∠DPE=∠ABC.
(3)58.
中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案): 这是一份中考数学三轮冲刺《四边形》解答题冲刺练习15(含答案),共8页。试卷主要包含了求线段BF的长,AE=1,等内容,欢迎下载使用。
中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案): 这是一份中考数学三轮冲刺《四边形》解答题冲刺练习14(含答案),共7页。
中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案): 这是一份中考数学三轮冲刺《四边形》解答题冲刺练习13(含答案),共7页。