![2023年年中考数学第二次模拟考试卷03(全解全析)第1页](http://img-preview.51jiaoxi.com/2/3/14162765/2/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(全解全析)第2页](http://img-preview.51jiaoxi.com/2/3/14162765/2/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(全解全析)第3页](http://img-preview.51jiaoxi.com/2/3/14162765/2/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(参考答案)第1页](http://img-preview.51jiaoxi.com/2/3/14162765/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(参考答案)第2页](http://img-preview.51jiaoxi.com/2/3/14162765/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(参考答案)第3页](http://img-preview.51jiaoxi.com/2/3/14162765/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(A4考试版)第1页](http://img-preview.51jiaoxi.com/2/3/14162765/3/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(A4考试版)第2页](http://img-preview.51jiaoxi.com/2/3/14162765/3/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(A4考试版)第3页](http://img-preview.51jiaoxi.com/2/3/14162765/3/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(考试版)第1页](http://img-preview.51jiaoxi.com/2/3/14162765/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(考试版)第2页](http://img-preview.51jiaoxi.com/2/3/14162765/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年年中考数学第二次模拟考试卷03(考试版)第3页](http://img-preview.51jiaoxi.com/2/3/14162765/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
所属成套资源:【中考二模专题】2023年中考数学第二次模拟考试试卷(共21套)
【中考二模】2023年年中考数学第二次模拟考试卷03
展开
这是一份【中考二模】2023年年中考数学第二次模拟考试卷03,文件包含2023年年中考数学第二次模拟考试卷03全解全析docx、2023年年中考数学第二次模拟考试卷03参考答案docx、2023年年中考数学第二次模拟考试卷03A4考试版docx、2023年年中考数学第二次模拟考试卷03考试版docx等4份试卷配套教学资源,其中试卷共42页, 欢迎下载使用。
中考三次模拟测试的重要性三次模拟考试都有一个共同的作用,就是“以考促教”、“以考促学”,但是三次考试还有比较明显的不同之处。三次模拟的目的是始终坚持教学研究,特别是习题教学的研究,做好统计分析工作,做好针对性的讲评,给学生学法指导。那么三次模拟考试又有何区别么?一模考试:一模考试大致的时间为3月中旬到4月之间。一模考试是考生第一次接触中考题型。这次考试主要是为了让考生了解中考题型,同时发现自己的薄弱环节,然后根据自己的实际情况对症下药,这样复习效果才会显著。二模考试:二模考试大致在五月份,难度相对较大。这次考试主要检测学校以及学生在第一轮复习的成果,让老师和孩子找到问题的关键,是否存在基础不扎实,计算能力是否需要加强等等。然后找到解决方法,做到复习方法的改进,以及重难点的分布,复习的目标。三模考试:三模考试大概在中考前两周左右,三模是中考前的最后一次考前检验,可以说这个时候,考生的成绩基本上已经定型了。主要也是对初中三年的知识做一个系统的检测,让学生知道中考的一个大致体系和结构。让学生增强考试信心,考试过后老师的复习也会做一个相应调整,做到查缺补漏,题型的讲解也会着重于综合性较强的题型,提升学生的综合运用能力和解题思想。 2023年年中考数学第二次模拟考试卷03 数学·参考答案一、选择题12345678910CDCCCCBCDA二、填空题11. 12. 13. 14. 15. 16. 三、解答题17.计算:.【解答】解:.18.先化简,再求值:,其中.【解答】解:原式,当时,原式.19.如图,正方形中,点,分别在,上,且于,连接,.求证:.【解答】证明:四边形是正方形,,,,又,,,在和中,,,.20.先化简,再求值:,其中,.【解答】解:,当,时,原式.21.已知:关于的一元二次方程有两个实数根.(1)求的取值范围;(2)设方程的两根为、,且满足,求的值.【解答】解:(1)关于的一元二次方程有两个实数根,△,且,解得:.(2)关于的一元二次方程有两个实数根、,,,,即,解得:.22.疫情防控期间,某校校医每天早上对全校办公室和教室进行药物喷洒消毒,完成1间办公室和1间教室的喷洒共需;完成2间办公室和3教室的喷洒共需.(1)该校医完成一间办公室和一间教室的药物喷洒各需多少时间?(2)消毒药物在一间教室内空气中的浓度(单位:与时间(单位:的函数关系如图所示,校医进行药物喷洒时与的函数关系式为,药物喷洒完成后与成反比例函数关系,两个函数图象的交点为点.当教室空气中的药物浓度不高于时,对人体健康无危害,校医依次对(1)班至班教室(共11间)进行药物喷洒消毒,当把最后一间教室药物喷洒完成后,(1)班学生能否进入教室?请通过计算说明.【解答】解:(1)设完成一间办公室和一间教室的药物喷洒各要和,则,解得,故校医完成一间办公室和一间教室的药物喷洒各要和; (2)一间教室的药物喷洒时间为,则11个房间需要,当时,,故点,设反比例函数表达式为:,将点的坐标代入上式并解得:,故反比例函数表达式为,当时,,故一班学生能安全进入教室.23.如图,在中,,点、分别是、边上的点,且.(1)求证:;(2)若,,当时,求的长.【解答】解:(1),.,.,,,,,.,; (2)如图,,.,.,,.,,,.24.阅读理解:如果一个自然数能分解成:,其中和都是两位数,且与的个位数字之和为7,十位数字之和为8,则称为“虎数”(字谜:七上八下(打一生肖),把分解成的过程叫做“虎式分解”.例如:,,,是“虎数”;,,不是“虎数”.若自然数是“虎数”,“虎式分解”为,将的十位数字与个位数的差,与的十位数字与个位数字的和求和记为(A);将的十位数字与个位数字的和,与的十位数字与个位数的差求差记为(A).记:(A).又如:是“虎数”, (A),(A),(A).(1)判断195和1736是否是“虎数”?并说明理由;(2)若自然数是“虎数”,且(A)能被5整除,求出所有满足条件的自然数.【解答】解:(1)1736是“虎数”,195不是“虎数”,理由如下:,,,是“虎数”,,,不是“虎数”,(2)设的十位数字为,个位数字为,自然数是“虎数”,的十位数字为,个位数字为的十位数字与个位数的差,与的十位数字与个位数字的和求和记为(A),的十位数字与个位数字的和,与的十位数字与个位数的差求差记为(A),(A),(A),(A)且(A)能被5整除,令(A),,,,,①当时,,即:或,解得:或,当时,,,,当时,,,,②当时,无满足条件的,,③当时,,即:,解得:,此时,,,综上,的取值为1080或1340或770.25.如图,在平面直角坐标系中,点为坐标原点,抛物线交轴于、两点,交轴于点,直线经过、两点.(1)求抛物线的解析式;(2)为直线下方抛物线上一动点,①当面积最大时,求点的坐标;②过点作轴于点,交于点,连接,过点作于点,设点的横坐标为,,求与之间的函数关系式(不要求写出自变量的取值范围). 【解答】解:(1)直线经过、两点,,,经过、两点,,解得,故抛物线的解析式为;(2)①设,过点作轴的平行线交直线于点,,.,当时,有最大值.当时,.,.的面积最大时点的坐标为,.②如图,,时,,解得,,,,,,,,轴,,点的横坐标为,,连接,,,,,由(2)可知,.
相关试卷
这是一份【中考二模】2023年年中考数学第二次模拟考试卷19,文件包含2023年年中考数学第二次模拟考试卷19全解全析docx、2023年年中考数学第二次模拟考试卷19参考答案docx、2023年年中考数学第二次模拟考试卷19A4考试版docx、2023年年中考数学第二次模拟考试卷19考试版docx等4份试卷配套教学资源,其中试卷共55页, 欢迎下载使用。
这是一份【中考二模】2023年年中考数学第二次模拟考试卷16,文件包含2023年年中考数学第二次模拟考试卷16全解全析docx、2023年年中考数学第二次模拟考试卷16A4考试版docx、2023年年中考数学第二次模拟考试卷16参考答案docx、2023年年中考数学第二次模拟考试卷16考试版docx等4份试卷配套教学资源,其中试卷共52页, 欢迎下载使用。
这是一份【中考二模】2023年年中考数学第二次模拟考试卷14,文件包含2023年年中考数学第二次模拟考试卷14全解全析docx、2023年年中考数学第二次模拟考试卷14参考答案docx、2023年年中考数学第二次模拟考试卷14A4考试版docx、2023年年中考数学第二次模拟考试卷14考试版docx等4份试卷配套教学资源,其中试卷共50页, 欢迎下载使用。
![英语朗读宝](http://img.51jiaoxi.com/images/ed4b79351ae3a39596034d4bbb94b742.jpg)