所属成套资源:2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】
- 51(x+p)(x+q)型多项式乘法-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
- 50计算多项式乘多项式2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
- 48计算单项式乘单项式-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
- 47用科学记数法表示绝对值小于1的数(基础题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
- 46用科学记数法表示绝对值小于1的数(容易题)-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 试卷 0 次下载
49单项式乘多项式-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】
展开
这是一份49单项式乘多项式-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共12页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
49单项式乘多项式-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】 一、单选题1.(人教版八年级上第十四章整式乘除与因式分解14.1整式的乘法(3))要使成立,则,的值分别是( )A., B., C., D.,2.(【新东方】初中数学1087【2020年】【初一下】)通过计算几何图形的面积可表示一些代数恒等式,下图可表示的代数恒等式是( )A. B.C. D.3.(2014届江苏省无锡市宜兴外国语学校九年级下学期期中考试数学试卷(带解析))下列运算正确的是( )A.a2•a3=a6 B.(a4)3=a12C.(﹣2a)3=﹣6a3 D.a(a﹣1)=a2﹣14.(江苏省镇江市丹阳市2020-2021学年七年级(下)期中数学试卷)如图,中,,四边形是边长为b的正方形,若,则阴影部分的面积为( )A.30 B.32 C.34 D.365.(江苏省常州市金坛区2021-2022学年七年级下学期期中数学试题)下列运算正确的是( )A. B.C. D.6.(江苏省南通市崇川区八一中学2019-2020学年八年级上学期期中数学试题)计算的结果是( )A. B. C. D. 二、填空题7.(江苏省兴化市顾庄学区三校2016-2017学年七年级下学期期末考试数学试题)一个长方体的长、宽、高分别是3x-4,2x和x,它的体积等于________8.(江苏省泰兴市2018-2019学年七年级下学期期中考试数学试题)计算6x3.(-2x2y)=__________.9.(江苏省东台市第四联盟2018-2019学年七年级下学期期中考试数学试题)计算=______.10.(江苏省徐州市铜山区2021-2022学年七年级下学期期中数学试题)计算:______.11.(江苏省无锡市侨谊实验中学2020—2021学年下学期数学期中考试七年级试卷)计算______ .12.(江苏省无锡市江阴市华士实验中学2020-2021学年七年级下学期期中数学试题)若,则___________.13.(江苏省盐城市初级中学2021-2022学年七年级下学期期中数学试题)长为a,宽为的长方形,它的面积为____________.(结果为最简)14.(江苏省淮安市淮阴区2021-2022学年七年级下学期期中数学试题)化简:x(x﹣1)+x=_____.15.(广东省广州市海珠区2021-2022学年八年级上学期期末数学试题)边长分别为m和2m的两个正方形如图的样式摆放,则图中阴影部分的面积为_____.16.(江苏省盐城市建湖县2019-2020学年七年级下学期期中数学试题)如图是一个长方体的示意图,计算这个长方体的体积为_____(用含x的代数式表示).17.(2021春·江苏常州·七年级常州市清潭中学校考期中)计算:________,________.18.(2021春·江苏淮安·七年级统考期中)化简:(﹣3x2)•(4x﹣3)=___.19.(2021春·江苏淮安·七年级校考期中)___________. 三、解答题20.(2013-2014学年江苏省江阴市祝塘中学七年级下学期期中考试数学试卷(带解析))化简求值:.21.(江苏省南京市鼓楼区2017-2018学年七年级下学期期中数学试题)计算(1) (2)22.(【校级联考】江苏省泰兴市黄桥教育联盟2018-2019学年七年级下学期期中考试数学试题)计算. (1) (2) 23.(【全国市级联考】江苏省常州市2017-2018年第二学期期末联考 七年级数学试题)求代数式的值,其中,,.24.(江苏省宿迁市泗洪县2021-2022学年七年级下学期期中数学试题)计算:(1)(2)25.(2022春·江苏淮安·七年级校考期中)如图,一长方形地块用来建造住宅、广场、商厦.(1)这块地的长为_______.(2)求这块地的面积.26.(2022春·江苏连云港·七年级校考期中)对于任何实数,我们规定符号的意义是:,按照这个规定请你计算:当时,的值.
参考答案:1.C【分析】根据整式的乘法展开,根据对应系数相等得到a,b的关系式,即可求解.【详解】∵∴a+3=5,-2b=4∴,故选C.【点睛】此题主要考查整式运算的应用,解题的关键是熟知整式乘法的运算法则.2.B【分析】由题意知,长方形的面积等于长2a乘以宽(a+b),面积也等于四个小图形的面积之和,从而建立两种算法的等量关系.【详解】解:长方形的面积等于:2a(a+b),也等于四个小图形的面积之和:a2+a2+ab+ab=2a2+2ab,即2a(a+b)=2a2+2ab.故选:B.【点睛】本题考查了单项式乘多项式的几何解释,列出面积的两种不同表示方法是解题的关键.3.B【详解】试题分析:A.a2•a3=a5,本选项错误;B.(a4)3=a12,本选项正确;C.(﹣2a)3=﹣8a3,本选项错误;D.a(a﹣1)=a2﹣a,本选项错误.故选B.考点:1.幂的乘方与积的乘方2.同底数幂的乘法3.整式的乘法.4.B【分析】根据S阴影=列出代数式,利用因式分解变形,再将已知等式代入计算即可.【详解】解:S阴影=.将,代入,∴S阴影=故选B.【点睛】本题考查了列代数式,代数式求值,因式分解的应用,解题的关键是表示出阴影部分面积.5.B【分析】根据合并同类项,同底数幂的除法,积的乘方,单项式乘以多项式的计算法则求解判断即可.【详解】解:A.,计算错误,不符合题意;B.,计算正确,符合题意;C.,计算错误,不符合题意;D.,计算错误,不符合题意;故选B.【点睛】本题主要考查了合并同类项,同底数幂的除法,积的乘方,单项式乘以多项式,熟知相关计算法则是解题的关键.6.C【分析】按照单项式乘以多项式运算法则进行计算即可.【详解】=,所以答案为C选项.【点睛】本题主要考查了整式乘法运算,熟练掌握相关法则是解题关键.7.6x3-8x2【分析】根据长方体的计算公式长×宽×高,列出算式,再进行计算即可.【详解】解:根据题意得:(3x-4)•2x•x=6x3-8x2;故答案为:6x3-8x2.【点睛】此题考查了单项式乘多项式,解题的关键是根据长方体的体积公式列出算式,再根据单项式乘多项式的法则进行计算即可.8.-12x5y【分析】根据单项式乘单项式的运算法则即可求解.【详解】6x3.(-2x2y)=-12x5y【点睛】此题主要考查整式的乘法,解题的关键是熟知其运算法则.9.【分析】利用单项式乘多项式的法则直接进行计算即可.【详解】解:2x(x-3y)=2x·x-2x·3y=2x2-6xy.故答案为2x2-6xy.【点睛】本题考查了单项式乘多项式的计算,熟记法则是解决此题的关键.10.【分析】直接运用单项式乘多项式的法则进行计算即可.【详解】解:故答案为:.【点睛】本题考查了单项式乘多项式,解决本题的关键是熟练掌握单项式乘多项式的运算法则.11.【分析】根据整式乘法的运算法则计算即可;【详解】原式;故答案是.【点睛】本题主要考查了整式乘法运算,准确计算是解题的关键.12.2【分析】根据整式的乘法及幂的运算法则即可求解.【详解】∵∴=故答案为:2.【点睛】此题主要考查代数式求值,解题的关键是熟知整式的乘法运算法则.13.2ab+3ac【分析】根据长方形面积公式列式计算即可.【详解】解:长方形面积为:a(2b+3c)=2ab+3ac故答案为:2ab+3ac【点睛】本题考查了单项式乘多项式的实际运用,掌握其运算法则是解本题的关键.14.x2【分析】单项式乘多项式,依次相乘,再合并同类项可得.【详解】原式=x2﹣x+x=x2,故答案为:x2.【点睛】此题考查了整式的乘法,解题的关键熟悉单项式乘多项式的运算法则及如何合并同类项.15.【分析】将图形补全为边长为的长方形,进而根据阴影部分面积等与长方形面积的一半减去小正方形的面积即可求解【详解】如图,图中阴影部分的面积为故答案为:【点睛】本题考查了整式的乘法与图形面积,添加辅助线求解是解题的关键.16.6x3﹣8x2【分析】根据长方体的体积=长×宽×高进行计算即可.【详解】解:体积为:2x×x(3x﹣4)=6x3﹣8x2,故答案为:6x3﹣8x2.【点睛】本题考查了列代数式和单项式与多项式的乘法,解题的关键是了解长方体的体积的计算方法,难度不大.17. ##【分析】根据幂的乘方、同底数幂的除法法则以及单项式乘以多项式的运算法则计算即可.【详解】解:,.故答案为:,.【点睛】本题主要考查了幂的乘方、同底数幂的除法以及单项式乘以多项式的运算法则等知识,熟练掌握相关运算法则是解题关键.18.﹣12x3+9x2【分析】直接利用单项式乘以多项式的计算法则求解即可.【详解】解:,故答案为:.【点睛】本题主要考查了单项式乘以多项式,解题的关键在于能够熟练掌握单项式乘以多项式的计算法则.19.【分析】根据运算法则,把单项式与多项式的每一项相乘,再把所得的积相加,即可得解.【详解】解:原式==.故答案为.【点睛】此题主要考查整式的乘法,熟练掌握即可解题.20.64.【详解】试题分析:先将整式进行化简,再将x的代入求值即可.试题解析:2[(m-1)m+m(m+1)][(m-1)m-m(m+1)]=2(m2-m+m2+m)(m2-m-m2-m)==-8m3当m=-2时原式=64.考点:整式的化简求值.21.(1) (2)【分析】(1)利用同底数幂的乘法和幂的乘方法则求解即可;(2)利用单项式乘以多项式的法则计算即可.【详解】(1)解:原式;(2)解:原式【点睛】本题主要考查了同底数幂的乘法和幂的乘方法则及单项式乘以多项式的法则,熟练掌握运算法则是解决本题的关键.22.(1)2;(2)【分析】原式利用乘方的意义,零指数幂、负整数指数幂法则计算即可得到结果.用单项式乘以多项式的法则进行计算即可.【详解】(1)解:原式=-1+1+2 =2.(2)解:原式【点睛】考查实数的运算以及整式的乘法,掌握单项式乘以多项式的运算法则是解题的关键.23.原式【详解】分析:先根据单项式乘多项式的法则计算,合并同类项后提取公因式2y,然后把,,代入计算即可.,详解:原式,当,,时,原式.点睛:本题考查了整式的化简求值,熟练掌握整式的运算法则是解答本题的关键.24.(1)(2) 【分析】(1)利用零指数幂的意义,负整数指数幂的意义,绝对值的意义进行计算,即可得出结果;(2)利用单项式乘多项式的法则,合并同类项法则进行计算,即可得出结果.(1)解:(2-π)0+(-2)-2-|-1|=1+-1=;(2)解:x(y-5)+y(3-x)-3y=xy-5x+3y-xy-3y=-5x.【点睛】本题考查了零指数幂,负整数指数幂,绝对值,单项式乘多项式,掌握零指数幂的意义,负整数指数幂的意义,绝对值的意义,单项式乘多项式的法则,合并同类项法则是解决问题的关键.25.(1)(2) 【分析】(1)根据题目中的图形可得这块长方形地块的长为,然后计算即可;(2)根据(1)可得长方形的长,再根据题目中的图形可得长方形的宽,然后代入面积公式计算即可.(1)解:由图可知:这块地的长为:.故答案为:.(2)由图可知:这块地的宽为,由(1)可得这块的长为,∴这块地的面积为:.∴这块地的面积为.【点睛】本题考查列代数式,多项式的加法,单项式与多项式的乘法.解题的关键是正确列出代数式并准确计算.26.1【分析】应先根据所给的运算方式列式并根据平方差公式和单项式乘多项式的运算法则化简,再把已知条件整体代入求解即可.【详解】解:=∵∴∴原式=【点睛】本题考查了平方差公式,单项式乘多项式,弄清楚规定运算的运算方法是解题的关键.
相关试卷
这是一份61-判断是否是因式分解-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共14页。试卷主要包含了单选题等内容,欢迎下载使用。
这是一份44同底数幂除法的逆用-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。
这是一份43同底数幂的除法-2022-2023学年下学期七年级数学期中复习高频考点专题练习【苏科版-江苏省期中真题】,共9页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。