人教版九年级上册23.1 图形的旋转当堂达标检测题
展开第18课 图形的旋转
课程标准 |
1、掌握旋转的概念,探索它的基本性质,理解对应点到旋转中心的距离相等、对应点与旋转中 2、能够按要求作出简单平面图形旋转后的图形,并能利用旋转进行简单的图案设计. |
知识点01 旋转的概念
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转.点O叫做 ,转动的角叫做
(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的 .
要点诠释:
旋转的三个要素: 、 和 .
知识点02 旋转的性质
(1)对应点到 的距离相等(OA= OA′);
(2)对应点与旋转中心所连线段的夹角等于 ;
(3)旋转前、后的图形全等(△ABC≌△).
要点诠释:
图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
知识点02 旋转的作图
在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
要点诠释:
作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点.
考法01 旋转的概念与性质
【典例1】如图,把四边形AOBC绕点O旋转得到四边形DOEF. 在这个旋转过程中:
(1)旋转中心是谁?
(2)旋转方向如何?
(3)经过旋转,点A、B的对应点分别是谁?
(4)图中哪个角是旋转角?
(5)四边形AOBC与四边形DOEF的形状、大小有何关系?
(6) AO与DO的长度有什么关系? BO与EO呢?
(7)∠AOD与∠BOE的大小有什么关系?
【即学即练1】 如图所示:O为正三角形ABC的中心.你能用旋转的方法将△ABC分成面积相等的三部分吗?如果能,设计出分割方案,并画出示意图.
【典例2】如图,边长为1的正方形ABCD绕点A逆时针旋转45°后得到正方形AB1C1D1,边B1C1与CD交于点O,则四边形AB1OD的面积是( )
A. B. C. D.
考法02 旋转的作图
【典例3】如图,已知△ABC与△DEF关于某一点对称,作出对称中心.
【典例4】如图,在方格网中已知格点△ABC和点O.
(1)画△A′B′C′和△ABC关于点O成中心对称;
(2)请在方格网中标出所有使以点A、O、C′、D为顶点的四边形是平行四边形的D点.
【即学即练2】如图,画出绕点逆时针旋转所得到的图形.
题组A 基础过关练
1.下列图形绕某点旋转180°后,不能与原来图形重合的是( )
A. B. C. D.
2.下列关于旋转的说法不正确的是( )
A.旋转中心在旋转过程中保持不动
B.旋转中心可以是图形上的一点,也可以是图形外的一点
C.旋转由旋转中心、旋转方向和旋转角所决定
D.旋转由旋转中心所决定
3.如图,绕点的顺时针旋转,旋转的角是,得到,那么下列说法错误的是( )
A.平分 B.
C. D.
4.如图,△ABC中,∠A=75°,∠B=50°,将△ABC绕点C按逆时针方向旋转,得到△A’B’ C,点A的对应点A'落在AB边上,则∠BCA'的度数为( )
A.20° B.25° C.30° D.35°
5.如图,将△ABC绕点A按逆时针方向旋转100°,得到△AB1C1,若点B1在线段BC的延长线上,则∠BB1C1的大小为( )
A.70° B.80° C.84° D.86°
6.如图,△ABC与△ADE都是直角三角形,∠C=∠AED=,点E在AB上,∠D=.如果△ABC经顺时针旋转后能与△ADE重合,那么旋转中心是点______,旋转了______度
题组B 能力提升练
1.下列四个圆形图案中,分别以它们所在圆的圆心为旋转中心,顺时针旋转72°后,能与原图形完全重合的是( )
A. B. C. D.
2.如图,在△ABC中,∠CAB=65°,在同一平面内,将△ABC绕点A逆时针旋转到△AB′C′的位置,使得CC′∥AB,则∠B′AB等于_____.
3.如图,在4×4的正方形网格中,△MNP绕某点旋转一定的角度,得到△M1N1P1,则其旋转中心可能是 ( )
A、点A B、点B C、点C D、点D
4.如图,在正方形ABCD中,E为DC边上的点,连结BE,将△BCE绕点C顺时针方向旋转900得到△DCF,连结EF,若∠BEC=600,则∠EFD= .
5.如图,在Rt△ABC中,∠ACB=90°,AC=5cm,BC=12cm,将△ABC绕点B顺时针旋转60°,得到△BDE,连接DC交AB于点F,则△ACF与△BDF的周长之和为_______________.
6.如图,P是正三角形ABC内的一点,且PA=6,PB=8,PC=10.若将△PAC绕点A逆时针旋转60°后,得到△P’AB,则点P与P’之间的距离为 ,∠APB= .
7.钟表的分针匀速旋转一周要60分钟,分针每分钟旋转了________度,时针每分钟旋转________度.
8.一个正三角形至少绕其中心旋转_________度,就能与其自身重合.
9.如图,已知正方形ABCD的边长为3,E、F分别是AB、BC边上的点,且∠EDF=45°,将DAE绕点D逆时针旋转90°,得到DCM.若AE=1,则FM的长为____.
10.如图,△ABC中,AB=AC=1,∠BAC=45°,△AEF是由△ABC绕点A按顺时针方向旋转得到的,连接BE,CF相交于点D,
(1)求证:BE=CF ;
(2)当四边形ACDE为菱形时,求BD的长.
题组C 培优拔尖练
1.如图,在Rt△ABC中,∠ABC=90°,AB=BC=,将△ABC绕点C逆时针旋转60°,得到△MNC,连接BM,则BM的长是__.
2.如图,正方形的边长为1,将其绕顶点C按逆时针方向旋转一定角度到位置,使得点B落在对角线上,则阴影部分的面积是______.
3.如图,△ABC中,AB=BC=5,AC=8,将△ABC绕点C顺时针方向旋转60°得到△DEC,连接BD,则BD的长度为_____.
4.如图,将矩形ABCD绕着点C按顺时针方向旋转得到矩形FECG,使点B落在AD边上的点E处,连结BG交CE于点H,连结BE.
(1)求证:BE平分∠AEC;
(2)取BC中点P,连结PH,求证:PH∥CG;
(3)若,求BG的长.
5.如图,点C在线段AB上,分别以AC、BC为边在线段AB的同侧作正方形ACDE和正方形BCMN,连结AM、BD.
(1)AM与BD的关系是:_____________________ .
(2)如果将正方形BCMN绕点C顺时针旋转锐角α,其它不变(如图).(1)中所得的结论是否仍然成立?请说明理由.
(3)在(2)的条件下,连接AB、DM,若AC=4, BC=2, 求的值.
6.已知与是两个大小不同的等腰直角三角形.
如图①所示,连接,,试判断线段和的数量和位置关系,并说明理由;
如图②所示,连接,将线段绕点顺时针旋转到,连接,试判断线段和的数量和位置关系,并说明理由.
初中数学人教版九年级上册第二十三章 旋转23.1 图形的旋转优秀当堂达标检测题: 这是一份初中数学人教版九年级上册第二十三章 旋转23.1 图形的旋转优秀当堂达标检测题,文件包含人教版九年级数学上册同步精品讲义第16课图形的旋转教师版doc、人教版九年级数学上册同步精品讲义第16课图形的旋转原卷版doc等2份试卷配套教学资源,其中试卷共40页, 欢迎下载使用。
九年级上册25.1.2 概率课堂检测: 这是一份九年级上册25.1.2 概率课堂检测,共6页。
人教版九年级上册24.1.1 圆课后测评: 这是一份人教版九年级上册24.1.1 圆课后测评,共5页。试卷主要包含了单选题,填空题,解答题等内容,欢迎下载使用。