![2023年中考数学二轮复习《函数的实际应用》中档题练习(含答案)01](http://img-preview.51jiaoxi.com/2/3/14058837/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学二轮复习《函数的实际应用》中档题练习(含答案)02](http://img-preview.51jiaoxi.com/2/3/14058837/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![2023年中考数学二轮复习《函数的实际应用》中档题练习(含答案)03](http://img-preview.51jiaoxi.com/2/3/14058837/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
2023年中考数学二轮复习《函数的实际应用》中档题练习(含答案)
展开一、选择题
1.某种气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P(kPa)是气体体积V(m3)的反比例函数,其图象如图所示,当气球内气体的气压大于150kPa时,气球将爆炸.为了安全,气体体积V应该是( )
A.小于0.64m3 B.大于0.64m3 C.不小于0.64m3 D.不大于0.64m3
2.今年3月,市路桥公司决定对A、B两地之间的公路进行改造,并由甲工程队从A地向B地方向修筑,乙工程队从B地向A第方向修筑.已知甲工程队先施工2天,乙工程队再开始施工,乙工程队施工几天后因另有任务提前离开,余下的任务由甲工程队单独完成,直到公路修通.甲、乙两个工程队修公路的长度y(米)与施工时间x(天)之间的函数关系如图所示.
下列说法:
①乙工程队每天修公路160米;
②甲工程队每天修公路120米;
③甲比乙多工作6天;
④A、B两地之间的公路总长是1200米.其中正确的说法有( )
A.4个 B.3个 C.2个 D.1个
3.教室里的饮水机接通电源就进入自动程序:开机加热时每分钟上升10 ℃,加热到100 ℃后停止加热,水温开始下降,此时水温(℃)与开机后用时(min)成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30 ℃时,接通电源后,水温y(℃)和时间x(min)的关系如图,为了在上午第一节下课时(8:45)能喝到不超过50 ℃的水,则接通电源的时间可以是当天上午的( )
A.7:20 B.7:30 C.7:45 D.7:50
4.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s(单位:千米),甲行驶的时间为t(单位:小时),s与t之间的函数关系如图所示,
有下列结论:
①出发1小时时,甲、乙在途中相遇;
②出发1.5小时时,乙比甲多行驶了60千米;
③出发3小时时,甲、乙同时到达终点;
④甲的速度是乙速度的一半.
其中,正确结论的个数是( )
A.4 B.3 C.2 D.1
5.甲、乙二人从学校出发去科技馆,甲步行一段时间后,乙骑自行车沿相同路线行进,两人均匀速前行,他们的路程差s(米)与甲出发时间t(分)之间的函数关系如图所示.
下列说法:
①乙先到达青少年宫;②乙的速度是甲速度的2.5倍;③b=480;④a=24.
其中正确的是( )
A.①②③ B.①②④ C.①③④ D.①②③④
6.某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(h)变化的函数图象,其中BC段是双曲线y=eq \f(k,x)(k≠0)的一部分,则当x=16时,大棚内的温度约为( )
A.18℃ B.15.5℃ C.13.5℃ D.12℃
7.烟花厂为春节特别设计了一种新型礼炮,这种礼炮的升空高度h(m)关于飞行时间t(s)的函数表达式为h=-1.5t2+12t+30.若这种礼炮在上升到最高点引爆,则从点火升空到引爆需要的时间为( ).
A.3s B.4s C.5s D.6s
8.在1-7月份,某地的蔬菜批发市场指导菜农生产和销售某种蔬菜,并向他们提供了这种蔬菜每千克售价与每千克成本的信息如图所示,则出售该种蔬菜每千克利润最大的月份可能是( ).
A.1月份 B.2月份 C.5月份 D.7月份
9.某商家销售某种商品,当单价为10元时,每天能卖出200个.现在采用提高售价方法来增加利润,已知商品单价每上涨1元,每天销售量就少10个,则每天销售金额最大为( )
A.2500元 B.2250元 C.2160元 D.2000元
10.图2是图1中拱形大桥的示意图,桥拱与桥面的交点为O,B,以点O为原点,水平直线OB为x轴,建立平面直角坐标系,桥的拱形可近似看成抛物线y=-(x-80)2+16,桥拱与桥墩AC的交点C恰好在水面,有AC⊥x轴,若OA=10米,则桥面离水面的高度AC为( )
A.16米 B.eq \f(17,4)米 C.16米 D.eq \f(15,4)米
11.太阳影子定位技术是通过分析视频中物体的太阳影子变化,确定视频拍摄地点的一种方法.为了确定视频拍摄地的经度,我们需要对比视频中影子最短的时刻与同一天东经120度影子最短的时刻.在一定条件下,直杆的太阳影子长度l(单位:米)与时刻t(单位:时)的关系满足函数关系式l=at2+bt+c(a,b,c是常数),如图记录了三个时刻的数据,根据上述函数模型和记录的数据,则该地影子最短时,最接近的时刻t是( )
B.13 D.13.5
12.某地要建造一个圆形喷水池,在水池中央垂直于地面安装一个柱子OA,O恰为水面中心,安置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下.在过OA的任一平面上,建立平面直角坐标系(如图),水流喷出的高度y(m)与水平距离x(m)之间的关系式是y=-x2+2x+eq \f(5,4).
则下列结论:
(1)柱子OA的高度为eq \f(5,4)m;
(2)喷出的水流距柱子1 m处达到最大高度;
(3)喷出的水流距水平面的最大高度是eq \f(5,2) m;
(4)水池的半径至少要eq \f(5,2)m才能使喷出的水流不至于落在水池外.
其中正确的有( )
A.1个 B.2个 C.3个 D.4个
二、填空题
13.如图,一个装有进水管和出水管的容器,从某时刻开始的4分钟内只进水不出水,在随后的8分钟内既进水又出水,接着关闭进水管直到容器内的水放完.假设每分钟的进水量和出水量是两个常数,容器内的水量y(单位:升)与时间x(单位:分)之间的部分关系.
那么从关闭进水管起 分钟该容器内的水恰好放完.
14.为预防“手足口病”,某学校对教室进行“药熏消毒”.消毒期间,室内每立方米空气中的含药量y(mg)与时间x(分)的函数关系如图所示.已知药物燃烧阶段,y与x成正比例,燃烧完后,y与x成反比例.现测得药物10分钟燃烧完,此时教室内每立方米空气的含药量为8 mg.当每立方米空气中的含药量低于1.6 mg时,对人体才能无毒害作用.那么从消毒开始,经过________分钟后教室内的空气才能达到安全要求.
15.飞机着陆后滑行的距离y(单位:m)关于滑行的时间x(单位:s)的函数解析式是y=-1.2x2+48x,则飞机着陆后滑行________m后才能停下来
16.游乐场投资150万元引进一项大型游乐设施,若不计维修保养费用,预计开放后每月可创收33万元,而该游乐设施开放后,从第1个月到第x个月的维修保养费用累计为y(单位:万元),且y=ax2+bx,若维修保养费用第1个月为2万元,第2个月为4万元;若将创收扣除投资和维修保养费用称为游乐场的纯收益g(单位:万元),g也是关于x的二次函数.
(1)y关于x的解析式 ;
(2)纯收益g关于x的解析式 ;
(3)设施开放 个月后,游乐场纯收益达到最大? 个月后,能收回投资?
17.如图,某小区准备用篱笆围成一块矩形花圃ABCD,为了节省篱笆,一边利用足够长的墙,另外三边用篱笆围着,再用两段篱笆EF与GH将矩形ABCD分割成①②③三块矩形区域,而且这三块矩形区域的面积相等,现有总长80 m的篱笆,当围成的花圃ABCD的面积最大时,AB的长为 m.
18.如图,一大桥有一段抛物线型的拱梁,抛物线的表达式为y=ax2+bx+c,小王骑自行车从O匀速沿直线到拱梁一端A,再匀速通过拱梁部分的桥面AC,小王从O到A用了2秒,当小王骑自行车行驶10秒时和20秒时拱梁的高度相同,则小强骑自行车通过拱梁部分的桥面AC共需 秒.
三、解答题
19.某市政府计划在总费用2300元的限额内,租用汽车送234名运动员和6名教练参加青少年运动会,每辆汽车上至少要有1名教练.现有甲、乙两种大客车,它们的载客量和租金如下表:
(1)共需租多少辆汽车?
(2)有几种租车方案?
(3)最节省费用的是哪种租车方案?
20.如图①所示,正方形ABCD的边长为6 cm,动点P从点A出发,在正方形的边上沿A→B→C→D运动,设运动的时间为t(s),三角形APD的面积为S(cm2),S与t的函数图象如图②所示,请回答下列问题:
(1)点P在AB上运动的时间为________s,在CD上运动的速度为________cm/s,三角形APD的面积S的最大值为________cm2;
(2)求出点P在CD上运动时S与t之间的函数解析式;
(3)当t为何值时,三角形APD的面积为10 cm2?
21.试验数据显示,一般成人喝半斤低度白酒后,1.5小时内其血液中酒精含量y(毫克/百毫升)与时间x(时)的关系可近似地用二次函数y=-200x2+400x刻画;1.5小时后(包括1.5小时)y与x可近似地用反比例函数y=eq \f(k,x)(k>0)刻画(如图26-Y-6所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当x=5时,y=45,求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.
22.某快餐店试销某种套餐,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).试销一段时间后发现,若每份套餐售价不超过10元,每天可销售400份;若每份套餐售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店每天的利润.
(1)若每份套餐售价不超过10元.
①试写出y与x的函数关系式;
②若要使该店每天的利润不少于800元,则每份套餐的售价应为多少元?
(2)该店把每份套餐的售价提高到10元以上,每天的利润能否达到1560元?若不能,请说明理由;若能,求出每份套餐的售价应定为多少元时,既能保证利润又能吸引顾客?
23.某公司生产的某种产品每件成本为40元,经市场调查整理出如下信息:
①该产品90天售量(n件)与时间(第x天)满足一次函数关系,部分数据如下表:
②该产品90天内每天的销售价格与时间(第x天)的关系如下表:
(1)求出第10天日销售量;
(2)设销售该产品每天利润为y元,请写出y关于x的函数表达式,并求出在90天内该产品的销售利润最大?最大利润是多少?【提示:每天销售利润=日销售量×(每件销售价格﹣每件成本)】
(3)在该产品销售的过程中,共有多少天销售利润不低于5400元,请直接写出结果.
答案
1.C
2.C
3.A
4.B.
5.A
6.C
7.B.
8.C
9.B.
10.B
11.C.
12.C.
13.答案为:8.
14.答案为:50
15.答案为:480;
16.答案为:(1)y=x2+x;
(2)纯收益g=33x-150-(x2+x)=-x2+32x-150
(3)g=-x2+32x-150=-(x-16)2+106,
17.答案为:15
18.答案为:26.
19.解:(1)由每辆汽车上至少要有1名老师,汽车总数不能大于6辆;
又要保证240名师生有车坐且汽车总数不能小于240/45(取整为6)辆,
综合起来可知汽车总数为6辆.
(2)设租用m辆甲种客车,则租车费用Q(单位:元)是m的函数,
即Q=400m+280(6﹣m);化简为:Q=120m+1680,
依题意有:120m+1680≤2300,
∴m≤31/6,
即m≤5
又要保证240名师生有车坐,m不小于4,所以有两种租车方案:
方案一:4辆甲种客车,2辆乙种客车;
方案二:5辆甲种客车,1辆乙种客车.
(3)由(2)知Q=120m+1680
∵Q随m增加而增加,
∴当m=4时,Q最少为2160元.即方案一最节省费用.
20.解:(1)6;2;18
(2)PD=6﹣2(t﹣12)=30﹣2t,S=eq \f(1,2)AD·PD=eq \f(1,2)×6×(30﹣2t)=90﹣6t,
即点P在CD上运动时S与t之间的函数解析式为S=90﹣6t(12≤t≤15).
(3)当0≤t≤6时易求得S=3t,将S=10代入,得3t=10,解得t=eq \f(10,3);
当12≤t≤15时,S=90﹣6t,将S=10代入,得90﹣6t=10,解得t=13eq \f(1,3).
所以当t为eq \f(10,3)或13eq \f(1,3)时,三角形APD的面积为10 cm2.
21.解:(1)①y=-200x2+400x=-200(x-1)2+200,
∴喝酒后1时血液中的酒精含量达到最大值,最大值为200毫克/百毫升.
②∵当x=5时,y=45,y=eq \f(k,x)(k>0),
∴k=xy=45×5=225.
(2)不能驾车去上班.
理由:∵晚上20:00到第二天早上7:00,一共有11小时,
将x=11代入y=eq \f(225,x),则y=eq \f(255,11)>20,
∴第二天早上7:00不能驾车去上班.
22.解:(1)①y=400x﹣2600.(5<x≤10).
②依题意得:400x﹣2600≥800,解得:x≥8.5,
∵5<x≤10,且每份套餐的售价x(元)取整数,
∴每份套餐的售价应为9元或10元.
(2)能,理由:依题意可知:每份套餐售价提高到10元以上时,
y=(x﹣5)[400﹣40(x﹣10)]﹣600,
当y=1560时,(x﹣5)[400﹣40(x﹣10)]﹣600=1560,
解得:x1=11,x2=14,
为了保证净收入又能吸引顾客,应取x1=11,即x2=14不符合题意.
故该套餐售价应定为11元.
23.解:(1)∵n与x成一次函数,
∴设n=kx+b,将x=1,n=198,x=3,n=194代入,得:
,解得:.
所以n关于x的一次函数表达式为n=﹣2x+200,
故第10天日销售量:n=﹣20+200=180(件);
(2)设销售该产品每天利润为y元,y关于x的函数表达式为:
当1≤x<50时,y=﹣2x2+160x+4000=﹣2(x﹣40)2+7200,
∵﹣2<0,
∴当x=40时,y有最大值,最大值是7200;
当50≤x≤90时,y=﹣120x+12000,
∵﹣120<0,
∴y随x增大而减小,即当x=50时,y的值最大,最大值是6000;
综上所述,当x=40时,y的值最大,最大值是7200,即在90天内该产品第40天的销售利润最大,最大利润是7200元;
(3)当1≤x<50时,由y≥5400可得﹣2x2+160x+4000≥5400,
解得:10≤x≤70,
∵1≤x<50,
∴10≤x<50;
当50≤x≤90时,由y≥5400可得﹣120x+12000≥5400,解得:x≤55,
∵50≤x≤90,
∴50≤x≤55,
综上,10≤x≤55,
故在该产品销售的过程中,共有46天销售利润不低于5400元.
甲种客车
乙种客车
载客量/(人/辆)
45
30
租金/(元/辆)
400
280
时间(第x天)
1
2
3
10
…
日销售量(n件)
198
196
194
?
…
时间(第x天)
1≤x<50
50≤x≤90
销售价格(元/件)
x+60
100
押中考数学第23-24题(解答中档题:圆、二次函数的实际应用)-备战2023年中考数学临考题号押题(全国通用): 这是一份押中考数学第23-24题(解答中档题:圆、二次函数的实际应用)-备战2023年中考数学临考题号押题(全国通用),文件包含押中考数学第23-24题解答中档题圆二次函数的实际应用解析版docx、押中考数学第23-24题解答中档题圆二次函数的实际应用原卷版docx等2份试卷配套教学资源,其中试卷共114页, 欢迎下载使用。
2023年中考数学二轮复习《锐角三角函数》中档题练习(含答案): 这是一份2023年中考数学二轮复习《锐角三角函数》中档题练习(含答案),共12页。试卷主要包含了选择题,填空题,解答题等内容,欢迎下载使用。
2023年中考数学二轮复习《函数的图象》中档题练习(含答案): 这是一份2023年中考数学二轮复习《函数的图象》中档题练习(含答案),共13页。试卷主要包含了选择题,第四象限,A,解答题等内容,欢迎下载使用。