中考数学二轮专题复习《函数压轴题》专项练习七(含答案)
展开中考数学二轮专题复习
《函数压轴题》专项练习七
1.如图1,已知二次函数y=ax2+x+c(a≠0)的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),连接AB、AC.
(1)请直接写出二次函数y=ax2+x+c的表达式;
(2)判断△ABC的形状,并说明理由;
(3)若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,请写出此时点N的坐标;
(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.
2.如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=-x-6交y轴于点C、D,点D是抛物线的顶点,且横坐标为-2.
(1)求出抛物线的解析式。
(2)判断△ACD的形状,并说明理由。
(3)直线AD交y轴于点F,在线段AD上是否存在一点P ,使∠ADC=∠PCF .若存在,直接写出点P的坐标;若不存在,说明理由。
3.已知抛物线y=ax2﹣bx﹣c经过原点O及点A(﹣4,0)和点C(2,3).
(1)求抛物线的解析式及顶点坐标;
(2)如图1,设抛物线的对称轴与x轴交于点E,将直线y=2x沿y轴向下平移n个单位后得到直线l,若直线l经过C点,与y轴交于点D,且与抛物线的对称轴交于点F.若P是抛物线上一点,且PC=PF,求点P的坐标;
(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,求新抛物线上到直线CD距离最短的点的坐标.(直接写出结果,不要解答过程)
4.如图,经过点A(0,﹣4)的抛物线y=x2+bx+c与x轴相交于点B(﹣1,0)和C,O为坐标原点.
(1)求抛物线的解析式;
(2)将抛物线y=x2+bx+c向上平移3.5个单位长度、再向左平移m(m>0)个单位长度,得到新抛物线.若新抛物线的顶点P在△ABC内,求m的取值范围;
(3)设点M在y轴上,∠OMB+∠OAB=∠ACB,求AM的长.
5.如图,已知顶点为C(0,﹣3)的抛物线y=ax2+b(a≠0)与x轴交于A,B两点,直线y=x+m过顶点C和点B.
(1)求m的值;
(2)求函数y=ax2+b(a≠0)的解析式;
(3)抛物线上是否存在点M,使得∠MCB=15°?若存在,求出点M的坐标;若不存在,请说明理由.
6.如图,在平面直角坐标系中,边长为1的正方形ABCD的顶点A在直线y=2x+4上,点B在第二象限,C,D两点均在x轴上,且点C在点D的左侧,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,且这条抛物线交y轴于点E.
(1)写出A,C两点的坐标;
(2)当抛物线y=﹣(x﹣m)2+n经过点C时,求抛物线所对应的函数表达式;
(3)当点E在AC所在直线上时,求m的值;
(4)当点E在x轴上方时,连接CE,DE,当△CDE的面积随m的增大而增大时,直接写出m的取值范围.
0.参考答案
1.解:(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),
∴,解得.
∴抛物线表达式:y=﹣x2+x+4;
(2)△ABC是直角三角形.
令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,
∴点B的坐标为(﹣2,0),
由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,
在Rt△AOC中AC2=AO2+CO2=42+82=80,
又∵BC=OB+OC=2+8=10,
∴在△ABC中AB2+AC2=20+80=102=BC2
∴△ABC是直角三角形.
(3)∵A(0,4),C(8,0),∴AC=4,
①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),
②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)
③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),
综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).
(4)如图,AB=2,BC=8﹣(﹣2)=10,AC=4,
∴AB2+AC2=BC2,
∴∠BAC=90°.
∴AC⊥AB.
∵AC∥MN,
∴MN⊥AB.
设点N的坐标为(n,0),则BN=n+2,
∵MN∥AC,
△BMN∽△BAC
当n=3时,△AMN面积最大是5,
∴N点坐标为(3,0).
∴当△AMN面积最大时,N点坐标为(3,0).
2.解:(1)由直线AC:y=﹣x﹣6,可得A(﹣6,0),C(0,﹣6),
∵抛物线y=ax2+bx+c与x轴交于点A、B,抛物线的顶点D的横坐标为﹣2,∴B(2,0).
把A、B、C三点坐标分别代入y=ax2+bx+c,得
,解得,∴抛物线的解析式为y=x2+2x﹣6;
(2)△ACD是直角三角形,理由如下:
∵y=x2+2x﹣6=(x+2)2﹣8,∴顶点D的坐标是(﹣2,﹣8).
∵A(﹣6,0),C(0,﹣6),∴AC2=62+62=72,CD2=22+(﹣8+6)2=8,AD2=(﹣2+6)2+82=80,
∴AC2+CD2=AD2,∴△ACD是直角三角形,∠ACD=90°;
(3)假设在线段AD上存在一点P,使∠ADC=∠PCF.
设直线AD的解析式为y=mx+n,
∵A(﹣6,0),D(﹣2,﹣8),
∴,解得,
∴直线AD的解析式为y=﹣2x﹣12,
∴F点坐标为(0,﹣12),设点P的坐标为(x,﹣2x﹣12).
∵∠ADC=∠DCF+∠DFC,∠PCF=∠DCF+∠PCD,∠ADC=∠PCF,∴∠DFC=∠PCD.
在△CPD与△FPC中,,∴△CPD∽△FPC,∴=
∴=,整理得,35x2+216x+324=0,
解得x1=﹣,x2=﹣(舍去),当x=﹣时,﹣2x﹣12=﹣2×(﹣)﹣12=﹣,
故所求点P的坐标为(﹣,﹣).
3.解:(1)∵抛物线y=ax2﹣bx﹣c经过原点O及点A(﹣4,0)和点C(2,3),
∴,解得,
∴抛物线的解析式为y=x2﹣x;
∵y=x2﹣x=(x﹣2)2﹣1,
∴抛物线的顶点坐标为(﹣2,﹣1);
(2)如图1:直线l的解析式为y=2x﹣n,
∵直线l过点C(2,3),
∴n=1,
∴直线l的解析式为y=2x﹣1,当x=0时,y=﹣1,即D(0,﹣1).
∵抛物线的对称轴为x=﹣2,
∴E(﹣2,0).
当x=﹣2时,y=2x﹣1=﹣5,即F(﹣2,﹣5),
∴CD=DF=2,
∴点D是线段CF的中点,
∵C(2,3),
∴EF=EC=5,∴ED垂直平分CF.∴PC=PF,
∴点P在CF的垂直平分线上,
∴点P是抛物线与直线ED的交点.
ED的解析式为y=﹣x﹣1.联立抛物线与ED,得
,解得,,
点P的坐标(﹣3﹣,-)或(﹣3﹣,);
(3)如图2:移后的抛物线为y=x2﹣x﹣4
平行于CD与物线相切的直线为y=2x﹣b,联立,得x2﹣x﹣4=2x﹣b
方程有相等二实根,得△=b2﹣4ac=(﹣1)2﹣4×(4﹣b)=0解得b=3.
x2﹣x﹣1=0,解得x=2,y=2x﹣3=7,
新抛物线上到直线CD距离最短的点的坐标是(2,7).
4.解:(1)将A(0,﹣4)、B(﹣2,0)代入抛物线y=x2+bx+c中,得:
解得: b=﹣1 c=﹣4
∴抛物线的解析式:y=x2﹣x﹣4.
(2)由题意,新抛物线的解析式可表示为:y=(x+m)2﹣(x+m)﹣4+,
即:y=x2+(m﹣1)x+m2﹣m﹣;
它的顶点坐标P:(1﹣m,﹣1);
由(1)的抛物线解析式可得:C(4,0);
那么直线AB:y=﹣2x﹣4;直线AC:y=x﹣4;
当点P在直线AB上时,﹣2(1﹣m)﹣4=﹣1,解得:m=;
当点P在直线AC上时,(1﹣m)﹣4=﹣1,解得:m=﹣2;
∴当点P在△ABC内时,﹣2<m<;
又∵m>0,
∴符合条件的m的取值范围:0<m<.
(3)由A(0,﹣4)、B(4,0)得:OA=OC=4,且△OAC是等腰直角三角形;
如图,在OA上取ON=OB=2,则∠ONB=∠ACB=45°;
∴∠ONB=∠NBA+OAB=∠ACB=∠OMB+∠OAB,即∠ONB=∠OMB;
如图,在△ABN、△AM1B中,∠BAN=∠M1AB,∠ABN=∠AM1B,
∴△ABN∽△AM1B,得:AB2=AN×AM1;
易得:AB2=(﹣2)2+42=20,AN=OA﹣ON=4﹣2=2;
∴AM1=20÷2=10,OM1=AM1﹣OA=10﹣4=6;
而∠BM1A=∠BM2A=∠ABN,
∴OM1=OM2=6,AM2=OM2﹣OA=6﹣4=2.
综上,AM的长为6或2.
5.解:(1)将(0,﹣3)代入y=x+m,
可得:m=﹣3;
(2)将y=0代入y=x﹣3得:x=3,
所以点B的坐标为(3,0),
将(0,﹣3)、(3,0)代入y=ax2+b中,
可得:,解得:,
所以二次函数的解析式为:y=x2﹣3;
(3)存在,分以下两种情况:
①若M在B上方,设MC交x轴于点D,则∠ODC=45°+15°=60°,
∴OD=OC•tan30°=,
设DC为y=kx﹣3,代入(,0),可得:k=,
联立两个方程可得:,解得:,
所以M1(3,6);
②若M在B下方,设MC交x轴于点E,则∠OEC=45°﹣15°=30°,
∴OE=OC•tan60°=3,
设EC为y=kx﹣3,代入(3,0)可得:k=,
联立两个方程可得:,解得:,
所以M2(,﹣2),
综上所述M的坐标为(3,6)或(,﹣2).
6.解:(1)∵正方形的边长为1,∴点A的纵坐标为1.
∵将y=1代入y=2x+4得:2x+4=1,解得;x=﹣1.5,
∴A(﹣1.5,1).∴D(﹣1.5,0)
∵CD=1,∴C(-2.5,0)
(2)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.
∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.
∵抛物线经过点C(﹣2.5,0),∴(﹣2.5﹣m)2+2m+4=0.解得:m1=m2=﹣1.5.
∴n=2×(﹣1.5)+4=1.
∴抛物线的解析式为y=﹣(x+1.5)2+1(y=﹣x2﹣3x﹣).
(3)∵抛物线y=﹣(x﹣m)2+n的顶点P在直线y=2x+4上运动,∴n=2m+4.
∴抛物线的解析式为y=﹣(x﹣m)2+2m+4.
∵将x=0代入得:y=﹣m2+2m+4.∴E(0,﹣m2+2m+4).
设直线AC的解析式为y=kx+b.
∵将A(﹣1.5,1、C(2.5,0)代入得:,解得k=1,b=2.5,
∴直线AC的解析式为y=x+2.5.∵点E在直线AC上,∴﹣m2+2m+4=2.5.
解得:m1=1﹣,m2=1+.
(4)S△CDE=DC•EO=﹣m2+m+2,
∵m=﹣=1,a=﹣<0,∴当m≤1时,y随x的增大而增大.
令﹣m2+m+2=0,解得:m1=1﹣,m2=1+(舍去).
∵点E在x轴的上方,∴m>1﹣.∴m的范围是1﹣<m≤1.
中考数学二轮专题复习《函数压轴题》专项练习四(含答案): 这是一份中考数学二轮专题复习《函数压轴题》专项练习四(含答案),共14页。
中考数学二轮专题复习《函数压轴题》专项练习十(含答案): 这是一份中考数学二轮专题复习《函数压轴题》专项练习十(含答案),共12页。
中考数学二轮专题复习《函数压轴题》专项练习三(含答案): 这是一份中考数学二轮专题复习《函数压轴题》专项练习三(含答案),共13页。试卷主要包含了∴y=-x2+2x+3,故C.等内容,欢迎下载使用。