备战2023数学新中考二轮复习重难突破(广东专用)专题07 平面直角坐标系
展开
重点分析
要点一、有序数对
定义:把有顺序的两个数a与b组成的数对,叫做有序数对,记作(a,b).
特别说明:
有序,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,如电影院的座位是6排7号,可以写成(6,7)的形式,而(7,6)则表示7排6号.
要点二、平面直角坐标系与点的坐标的概念
1. 平面直角坐标系
在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系.水平的数轴称为x轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1).
特别说明::平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的.
2. 点的坐标
平面内任意一点P,过点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标,记作:P(a,b),如图2.
特别说明::
(1)表示点的坐标时,约定横坐标写在前,纵坐标写在后,中间用“,”隔开.
(2)点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离.
(3) 对于坐标平面内任意一点都有唯一的一对有序数对(x,y)和它对应,反过来对于任意一对有序数对,在坐标平面内都有唯一的一点与它对应,也就是说,坐标平面内的点与有序数对是一一对应的.
要点三、坐标平面
1. 象限
建立了平面直角坐标系以后,坐标平面就被两条坐标轴分成如图所示的Ⅰ、Ⅱ、Ⅲ、Ⅳ四个部分,分别叫做第一象限、第二象限、第三象限和第四象限,如下图.
特别说明::
(1)坐标轴x轴与y轴上的点(包括原点)不属于任何象限.
(2)按方位来说:第一象限在坐标平面的右上方,第二象限在左上方,第三象限在左下方,第四象限在右下方.
2. 坐标平面的结构
坐标平面内的点可以划分为六个区域:x轴,y轴、第一象限、第二象限、第三象限、第四象限. 这六个区域中,除了x轴与y轴有一个公共点(原点)外,其他区域之间均没有公共点.
要点四、点坐标的特征
1.各个象限内和坐标轴上点的坐标符号规律
特别说明::
(1)对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上.
(2)坐标轴上点的坐标特征:x轴上的点的纵坐标为0;y轴上的点的横坐标为0.
(3)根据点的坐标的符号情况可以判断点在坐标平面上的大概位置;反之,根据点在坐标平面上的位置也可以判断点的坐标的符号情况.
2.象限的角平分线上点坐标的特征
第一、三象限角平分线上点的横、纵坐标相等,可表示为(a,a);
第二、四象限角平分线上点的横、纵坐标互为相反数,可表示为(a,-a).
3.关于坐标轴对称的点的坐标特征
P(a,b)关于x轴对称的点的坐标为 (a,-b);
P(a,b)关于y轴对称的点的坐标为 (-a,b);
P(a,b)关于原点对称的点的坐标为 (-a,-b).
4.平行于坐标轴的直线上的点
平行于x轴的直线上的点的纵坐标相同;
平行于y轴的直线上的点的横坐标相同.
难点解读
1.理解平面直角坐标系概念,能正确画出平面直角坐标系.
2.能在平面直角坐标系中,根据坐标确定点,以及由点求出坐标,掌握点的坐标的特征.
3.由数轴到平面直角坐标系,渗透类比的数学思想.
真题演练
1.(2021·广东肇庆市·九年级一模)方程组的解为,则点P(a,b)在第( )象限.
A.一 B.二 C.三 D.四
【答案】A
【解析】根据题意,将代入方程中,求出a,b后得到点P的坐标即可得解.
【解答】把方程的解代入所给方程组得
,
解得,
∴点P坐标为,在第一象限,
故选:A.
【点评】本题主要考查了二元一次方程组的解,以及判断平面直角坐标系中点所在的象限,熟练掌握相关基础知识是解决本题的关键.
2.(2021·广东广州市·九年级一模)在平面直角坐标系中,点关于y轴对称的点的坐标为( )
A. B. C. D.
【答案】C
【解析】平面直角坐标系中任意一点,关于x轴的对称点的坐标是,关于y轴的对称点的坐标是,据此可以求得点关于y轴对称点的坐标.
【解答】解:点关于y轴对称,
对称点的坐标为,
故选:C.
【点评】解决本题的关键是掌握好对称点的坐标规律:
(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;
(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;
(3)关于原点对称的点,横坐标与纵坐标都互为相反数.
3.(2021·广东汕头市·九年级一模)在平面直角坐标系中,点A的坐标,它到x轴的距离为( )
A. B. C.2 D.3
【答案】D
【解析】到x轴的距离是点纵坐标的绝对值,计算即可
【解答】∵点A的坐标,
∴它到x轴的距离为|3|=3,
故选D
【点评】本题考查了点到坐标轴的距离,根据到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.
4.(2021·广东广州市·九年级一模)关于的方程(为常数)无实数根,则点在( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】A
【解析】关于x的方程无实数根,即判别式△=b2−4ac<0,即可得到关于a的不等式,从而求得a的范围,进而得到结论.
【解答】解:∵a=1,b=−2,c=a,
∴△=b2−4ac=(−2)2−4×1×a=4−4a<0,
解得:a>1,
∴点(a,a+1)在第一象限,
故选:A.
【点评】本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的关于x的方程无实数根,即判别式△=b2−4ac<0.即可得到关于a的不等式,从而求得a的范围,进而得到结论.实数根;(3)△<0⇔方程没有实数根.
5.(2021·广东九年级其他模拟)以方程组的解为坐标的点(x,y)在平面直角坐标系中的位置是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】A
【解析】先根据代入消元法解方程组,可解出的x、y的值,然后根据x、y的值可以判断出该点在何象限内.然后判断即可.
【解答】解:,
可知﹣x+2=x﹣1,
解得:,
∴,
∵x>0,y>0,
∴点在第一象限.
故选A.
【点评】本题主要考查了解二元一次方程组及象限与点的坐标,准确计算判断是解题的关键.
6.(2020·广东珠海市中考模拟)如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为( )
A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1
【答案】B
【解析】
试题分析:根据作图方法可得点P在第二象限角平分线上,
则P点横纵坐标的和为0,即2a+b+1=0,
∴2a+b=﹣1.故选B.
7.(2020·广东东莞市中考模拟)已知点在轴上,则点的坐标是( )
A. B. C. D.
【答案】A
【分析】
直接利用关于x轴上点的坐标特点得出m的值,进而得出答案.
【详解】
解:点在轴上,
,
解得:,
,
则点的坐标是:.
故选A.
【点睛】
此题主要考查了点的坐标,正确得出m的值是解题关键.
8.(2020·广东省广州市模拟)在平面直角坐标系的第二象限内有一点,点到轴的距离为3,到轴的距离为4,则点的坐标是( )
A. B. C. D.
【答案】C
【解析】
分析:根据第二象限内点的坐标特征,可得答案.
详解:由题意,得
x=-4,y=3,
即M点的坐标是(-4,3),
故选C.
点睛:本题考查了点的坐标,熟记点的坐标特征是解题关键.横坐标的绝对值就是到y轴的距离,纵坐标的绝对值就是到x轴的距离.
9.(2020·广东省深圳市模拟)已知点P(1﹣a,2a+6)在第四象限,则a的取值范围是( )
A.a<﹣3 B.﹣3<a<1 C.a>﹣3 D.a>1
【答案】A
【分析】
根据第四象限的点的横坐标是正数,纵坐标是负数列出不等式组求解即可.
【详解】
解:∵点P(1﹣a,2a+6)在第四象限,
∴
解得a<﹣3.
故选A.
【点睛】
本题考查了点的坐标,一元一次不等式组的解法,求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解).
10.(2020·广东省韶关市模拟)在平面直角坐标系中,若点A(a,-b)在第一象限内,则点B(a,b)所在的象限是( )
A.第一象限 B.第二象限 C.第三象限 D.第四象限
【答案】D
【分析】
先根据第一象限内的点的坐标特征判断出a、b的符号,进而判断点B所在的象限即可.
【详解】
∵点A(a,-b)在第一象限内,
∴a>0,-b>0,
∴b<0,
∴点B((a,b)在第四象限,
故选D.
【点睛】
本题考查了点的坐标,解决本题的关键是牢记平面直角坐标系中各个象限内点的符号特征:第一象限正正,第二象限负正,第三象限负负,第四象限正负.
11.(2020·广东省模拟)在平面直角坐标系中,一个智能机器人接到如下指令:从原点O出发,按向右,向上,向右,向下的方向依次不断移动,每次移动1m.其行走路线如图所示,第1次移动到A1,第2次移动到A2,…,第n次移动到An.则△OA2A2018的面积是( )
A.504m2 B.m2 C.m2 D.1009m2
【答案】A
【分析】
由OA4n=2n知OA2017=+1=1009,据此得出A2A2018=1009-1=1008,据此利用三角形的面积公式计算可得.
【详解】
由题意知OA4n=2n,
∴OA2016=2016÷2=1008,即A2016坐标为(1008,0),
∴A2018坐标为(1009,1),
则A2A2018=1009-1=1008(m),
∴=A2A2018×A1A2=×1008×1=504(m2).
故选:A.
【点睛】
本题主要考查点的坐标的变化规律,解题的关键是根据图形得出下标为4的倍数时对应长度即为下标的一半,据此可得.
12.(2020·广东省广州市模拟)已知点A与B关于x轴对称,若点A坐标为(﹣3,1),则点B的坐标为____.
【答案】(﹣3,﹣1)
【分析】
根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.
【详解】
解:点A与点B关于x轴对称,点A的坐标为(﹣3,1),则点B的坐标是(﹣3,﹣1).
故答案为(﹣3,﹣1).
【点睛】
本题考查关于x轴对称的点的坐标,利用关于x轴对称的点的横坐标相等,纵坐标互为相反数是解题的关键.
13.(2020·广东省珠海市模拟)如图,动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动到点(2,0),第3次接着运动到点(3,2),……,按这样的运动规律,经过第2011次运动后,动点P的坐标是______.
【答案】(2011,2)
【解析】
根据已知提供的数据从横纵坐标分别分析得出横坐标为运动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.
根据动点P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),
第2次接着运动到点(2,0),第3次接着运动到点(3,2),
∴第4次运动到点(4,0),第5次接着运动到点(5,1),…,
∴横坐标为运动次数,经过第2011次运动后,动点P的横坐标为2011,
纵坐标为1,0,2,0,每4次一轮,
∴经过第2011次运动后,动点P的纵坐标为:2011÷4=502余3,
故纵坐标为四个数中第三个,即为2,
∴经过第2011次运动后,动点P的坐标是:(2011,2),
故答案为(2011,2).
14.(2020·广东省模拟)如图,在平面直角坐标系中,将矩形AOCD沿直线AE折叠(点E在边DC上),折叠后顶点D恰好落在边OC上的点F处.若点D的坐标为(10,8),则点E的坐标为 .
【答案】(10,3)
【分析】
根据折叠的性质得到AF=AD,所以在直角△AOF中,利用勾股定理求得OF=6,然后设EC=x,则EF=DE=8-x,CF=10-6=4,根据勾股定理列方程求出EC可得点E的坐标.
【详解】
∵四边形AOCD为矩形,D的坐标为(10,8),
∴AD=BC=10,DC=AB=8,
∵矩形沿AE折叠,使D落在BC上的点F处,
∴AD=AF=10,DE=EF,
在Rt△AOF中,OF= =6,
∴FC=10−6=4,
设EC=x,则DE=EF=8−x,
在Rt△CEF中,EF2=EC2+FC2,
即(8−x)2=x2+42,
解得x=3,即EC的长为3.
∴点E的坐标为(10,3).
15.(2020·广东省模拟)已知点P(3﹣m,m)在第二象限,则m的取值范围是____________________.
【答案】m>3.
【解析】
试题分析:因为点P在第二象限,所以,,解得:
考点:(1)平面直角坐标;(2)解不等式组
16.(2020·广东省韶关市模拟)如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是_____.
【答案】(﹣5,4).
【分析】
首先由A、B两点坐标,求出AB的长,根据菱形的性质可得AD=CD=AB,从而可得到点C的横坐标;接下来在△AOD中,利用勾股定理求出DO的长,结合上面的结果,即可确定出C点的坐标.
【详解】
由题知A(3,0),B(-2,0),D在y轴上,
∴AB=3-(-2)=5,OA=3,BO=2,
由菱形邻边相等可得AD=AB=5,
在Rt△AOD中,由勾股定理得:
OD==4,
由菱形对边相等且平行得CD=BA=5,
所以C(-5,4).
故答案为(﹣5,4).
【点睛】
本题考查了菱形的性质及坐标与图形的性质,运用勾股定理求出OD的长是解答本题的关键.
17.(2020·广东省珠海市模拟)如图,点的坐标为,点在轴上,把沿轴向右平移到,若四边形的面积为9,则点的坐标为_______.
【答案】(4,3)
【分析】
过点A作AH⊥x轴于点H,得到AH=3,根据平移的性质证明四边形ABDC是平行四边形,得到AC=BD,根据平行四边形的面积是9得到,求出BD即可得到答案.
【详解】
过点A作AH⊥x轴于点H,
∵A(1,3),
∴AH=3,
由平移得AB∥CD,AB=CD,
∴四边形ABDC是平行四边形,
∴AC=BD,
∵,
∴BD=3,
∴AC=3,
∴C(4,3)
故答案为:(4,3).
【点睛】
此题考查平移的性质,平行四边形的判定及性质,直角坐标系中点到坐标轴的距离与点坐标的关系.
18.(2020·广州市模拟)如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.
【答案】(0,21009)
【解析】
【分析】本题点A坐标变化规律要分别从旋转次数与点A所在象限或坐标轴、点A到原点的距离与旋转次数的对应关系.
【详解】∵∠OAA1=90°,OA=AA1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,
∴OA1=,OA2=()2,…,OA2018=()2018,
∵A1、A2、…,每8个一循环,
∵2018=252×8+2
∴点A2018的在y轴正半轴上,OA2018==21009,
故答案为(0,21009).
【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.
备战2023数学新中考二轮复习重难突破(广东专用)专题14 统计: 这是一份备战2023数学新中考二轮复习重难突破(广东专用)专题14 统计,文件包含备战2023数学新中考二轮复习重难突破广东专用专题14统计解析版docx、备战2023数学新中考二轮复习重难突破广东专用专题14统计原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(广东专用)专题13 概率: 这是一份备战2023数学新中考二轮复习重难突破(广东专用)专题13 概率,文件包含备战2023数学新中考二轮复习重难突破广东专用专题13概率解析版docx、备战2023数学新中考二轮复习重难突破广东专用专题13概率原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(广东专用)专题10 圆: 这是一份备战2023数学新中考二轮复习重难突破(广东专用)专题10 圆,文件包含备战2023数学新中考二轮复习重难突破广东专用专题10圆解析版docx、备战2023数学新中考二轮复习重难突破广东专用专题10圆原卷版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。