![备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程01](http://img-preview.51jiaoxi.com/2/3/13956162/0/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程02](http://img-preview.51jiaoxi.com/2/3/13956162/0/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程03](http://img-preview.51jiaoxi.com/2/3/13956162/0/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程01](http://img-preview.51jiaoxi.com/2/3/13956162/1/0.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程02](http://img-preview.51jiaoxi.com/2/3/13956162/1/1.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
![备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程03](http://img-preview.51jiaoxi.com/2/3/13956162/1/2.jpg?x-oss-process=image/resize,w_794,m_lfit,g_center/sharpen,100)
备战2023数学新中考二轮复习重难突破(广东专用)专题04 一元一次方程
展开
重点分析
一、一元一次方程
1.方程
含有未知数的等式叫做方程.
2.方程的解
能使方程两边相等的未知数的值叫做方程的解.
3.等式的性质
(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.
(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.
4.一元一次方程
只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项.
5.一元一次方程解法的一般步骤
整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).
难点解读
二、二元一次方程(组)
1.二元一次方程
含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).
2.二元一次方程的解
使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.
3.二元一次方程组
两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.
4.二元一次方程组的解
使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.
5.二元一次方程组的解法
①代入消元法;②加减消元法.
6.三元一次方程(组)
(1)三元一次方程
把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.
(2)三元一次方程组
由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.
真题演练
1.(2021·广东中考真题)如图,在数轴上,点A、B分别表示a、b,且,若,则点A表示的数为( )
A. B.0 C.3 D.
2.(2021·广东佛山市·九年级二模)方程的根为( )
A.0 B. C.1 D.2
3.(2021·广东华侨中学九年级二模)下列说法中,其中不正确的有( )
①如果x=y,那么=
②a2的算术平方根是a,
③同旁内角互补,两直线平行;
④两条直线被第三条直线所截,同位角相等.
A.0个 B.1个 C.2个 D.3个
4.(2021·广东深圳市·九年级一模)商场将进价为100元的商品提高80%后标价,销售时按标价打折销售,结果仍获利44%,则这件商品销售时打几折( )
A.7折 B.7.5折 C.8折 D.8.5折
5.(2021·广州大学附属中学九年级一模)互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )
A.120元 B.100元 C.80元 D.60元
6.(2021·广东九年级专题练习)一件夹克衫先按成本提高40%标价,再按9折(标价的90%)出售,结果获利38元,若设这件夹克衫的成本是x元,根据题意,可得到的方程是( )
A. B.
C. D.
7.(2021·广东九年级专题练习)我国古代数学著作《增删算法统宗》记载“绳索量竿”问题:“一条竿子一条索,索比竿子长一托.折回索子却量竿,却比竿子短一托.”其大意为:现有一根竿和一条绳索,用绳索去量竿,绳索比竿长5尺;如果将绳索对半折后再去量竿,就比竿短5尺.设绳索长x尺.则符合题意的方程是( )
A. B.
C. D.
8.(2021·广东阳江市·)新新商场第1次用39万元购进A,B两种商品.销售完后获得利润6万元(总利润=单件利润×销售量),它们的进价和售价如表:
商品 价格 | A | B |
进价(元/件) | 1200 | 1000 |
售价(元/件) | 1350 | 1200 |
(1)该商场第1次购进A,B两种商品各多少件?
(2)商场第2次以原价购进A,B两种商品,购进A商品的件数不变,而购进B商品的件数是第1次的2倍,A商品按原价销售,而B商品打折销售,若两种商品销售完毕,要使得第2次经营活动获得的利润等于36 000元,则B种商品是打几折销售的?
9.(2021·广东广州市·九年级二模)为了预防新冠肺炎疫情的发生,学校免费为师生提供防疫物品.某校花7200元购进洗手液与84消毒液共400瓶,已知洗手液的价格是25元瓶,84消毒液的价格是15元瓶.
求:(1)该校购进洗手液和84消毒液各多少瓶?
(2)若购买洗手液和84消毒液共150瓶,总费用不超过2500元,请问最多能购买洗手液多少瓶?
26.(2021·广东九年级专题练习)新冠肺炎疫情期间,某小区计划购买甲、乙两种品牌的消毒剂,乙品牌消毒剂每瓶的价格比甲品牌消毒剂每瓶价格的3倍少50元,已知用300元购买甲品牌消毒剂的数量与用400元购买乙品牌消毒剂的数量相同.
(1)求甲、乙两种品牌消毒剂每瓶的价格各是多少元?
(2)若该小区从超市一次性购买甲、乙两种品牌的消毒剂共40瓶,且总费用为1400元,求购买了多少瓶乙品牌消毒剂?
10.(2021·广东深圳市·九年级一模)某工厂计划招聘A、B两个工种的工人共120人,已知A、B两个工种的工人的月工费分别为2400元和3000元.
(1)若工厂每月付A、B两个工种的总工费为330000元,那么两个工种的工人各招聘多少人.
(2)若生产需要,要求B工种的人数不少于A工种人数的2倍,那么招聘A工种的人数为多少时,可使每月支付的A、B两个工种的总工资最少.
28.(2021·广东广州市·九年级二模)为了拉动内需,全国各地汽车购置税补贴活动在2009年正式开始,某经销商在政策出台前一个月共售出某品牌汽车的手动型和自动型共960台,政策出台后的第一个月售出这两种型号的汽车共1228台,其中手动型和自动型汽车的销售量分别比政策出台前一个月增长30%和25%.
(1)在政策出台前一个月,销售的手动型和自动型汽车分别为多少台;
(2)若手动型汽车每台价格为8万元,自动型汽车每台价格为9万元.根据汽车补贴政策,政府按每台汽车价格的5%给购买汽车的用户补贴,问政策出台后的第一个月,政府对这1228台汽车用户共补贴了多少万元.
11.(2021·广东九年级专题练习)针对资急需问题,某医疗设备公司紧急复工,但受疫情影响,医用防护服生产车间仍有7人不能到厂生产.为了应对疫情,已复产的工人加班生产,由原来每天工作8小时增加到10小时,每小时完成的工作量不变.原来每天能生产防护服800套,现在每天能生产防护服650套.
(1)求原来生产防护服的工人有多少人?
(2)复工10天后,未到的工人同时到岗加入生产,每天生产时间仍然为10小时.公司决定将复工后生产的防护服14500套捐献给某地,则至少还需要生产多少天才能完成任务?
12.(2021·广东九年级专题练习)如图,四边形ABCD中,,,,点P自点A向D以1cm/s的速度运动,到D点即停止;点Q自点C向B以2cm/s的速度运动,到B点即停止,直线PQ分原四边形为两个新四边形;则当P,Q同时出发_____秒后其中一个新四边形为平行四边形.
13.(2021·广东佛山市·九年级其他模拟)年春节前夕,突如其来的新型冠状病毒肺炎造成口罩紧缺,为满足社会需求,某一工厂需购买、两种材料,用于生产甲、乙两种口罩,每件分别使用的材料和数量如表:
| A种 | B种 |
甲型 | 30kg | 10kg |
乙型 | 20kg | 20kg |
其中种材料每千克元,种材料每千克元.
(1)若生产甲型口罩的数量比生产乙型口罩的数量多件时,两种口罩需购买材料的资金相同,求生产甲、乙两种口罩各多少件?
(2)若工厂用于购买、两种材料的资金不超过元,且需生产两种口罩共件,求至少能生产甲种口罩多少件?
备战2023数学新中考二轮复习重难突破(广东专用)专题14 统计: 这是一份备战2023数学新中考二轮复习重难突破(广东专用)专题14 统计,文件包含备战2023数学新中考二轮复习重难突破广东专用专题14统计解析版docx、备战2023数学新中考二轮复习重难突破广东专用专题14统计原卷版docx等2份试卷配套教学资源,其中试卷共27页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(广东专用)专题13 概率: 这是一份备战2023数学新中考二轮复习重难突破(广东专用)专题13 概率,文件包含备战2023数学新中考二轮复习重难突破广东专用专题13概率解析版docx、备战2023数学新中考二轮复习重难突破广东专用专题13概率原卷版docx等2份试卷配套教学资源,其中试卷共46页, 欢迎下载使用。
备战2023数学新中考二轮复习重难突破(广东专用)专题10 圆: 这是一份备战2023数学新中考二轮复习重难突破(广东专用)专题10 圆,文件包含备战2023数学新中考二轮复习重难突破广东专用专题10圆解析版docx、备战2023数学新中考二轮复习重难突破广东专用专题10圆原卷版docx等2份试卷配套教学资源,其中试卷共78页, 欢迎下载使用。