|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题(解析版)
    立即下载
    加入资料篮
    2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题(解析版)01
    2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题(解析版)02
    2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题(解析版)03
    还剩7页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题(解析版)

    展开
    这是一份2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题(解析版),共10页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省南京市建邺区高一上学期9月月考数学试题

     

    一、单选题

    1.已知全集    

    A B C D

    【答案】B

    【分析】根据补集与交集的概念即可求出结果.

    【详解】因为,所以

    故选:B.

    2.命题,总有,则为(    

    A,使得 B,使得

    C,总有 D,总有

    【答案】B

    【解析】根据全称命题的否定是特称命题可得出答案.

    【详解】解:命题,总有,则,使得.

    故选:B

    【点睛】本题考查全称命题的否定,是基础题.

    3.下列关系正确的是(    

    A B C D

    【答案】D

    【分析】根据已知条件,结合空集的定义,即可判断各选项的正误.

    【详解】.

    故选:D.

    4.已知R,则下列不等式正确的是(    

    A B C D

    【答案】C

    【分析】利用举实例判断ABD,利用幂函数的单调性判断C

    【详解】解:对于A,当时,满足,但, 所以A错误,

    对于B,当时,满足,但,所以B错误,

    对于CR上为增函数,,所以C正确,

    对于D,当时,,所以D错误,

    故选:C

    5.已知集合,则中元素个数为(    

    A2 B3 C4 D5

    【答案】A

    【分析】求出集合,利用交集定义能求出,再求元素个数即可得解.

    【详解】0

    故选:A

    6.设全集,集合,则图中阴影部分表示的集合为(    

    A B C D

    【答案】C

    【分析】先求出集合,进而求出,图中阴影部分表示的集合为,再利用集合的基本运算求解即可.

    【详解】解:因为

    所以

    图中阴影部分表示的集合为=.

    故选:

    7.设集合,若,则的取值集合是(    

    A B C D

    【答案】D

    【分析】根据已知条件,结合集合的包含关系,即可求解.

    【详解】集合

    的取值集合是

    故选:

    8.对于任意的实数,定义表示不超过的最大整数,例如,那么的(    

    A.充分不必要条件 B.必要不充分条件

    C.充要条件 D.既不充分也不必要条件

    【答案】B

    【分析】根据充分必要性分别判断即可.

    【详解】,则可设,则,其中

    ,即能推出

    反之,若,满足,但,即推不出

    所以必要不充分条件,

    故选:B.

     

    二、多选题

    9.下列表示不是同一集合的是(    

    A B

    C D

    【答案】ABD

    【分析】A选项两个集合的元素不同,BD选项两个集合一个是点集一个是数集.

    【详解】A选项:分别表示两个点集,不是同一个点,表示不是同一集合;

    B选项:表示直线上的点的坐标,表示直线上的点的纵坐标,表示不是同一集合;

    C选项:两个集合相同;

    D选项:是数集,是有序数对构成的集合,表示不是同一集合.

    故选:ABD

    10.已知为全集,下列各项中与等价的有(    

    A B C  D

    【答案】BD

    【分析】根据已知条件,结合交、并、补集的混合运算,即可依次求解.

    【详解】解:

    ,故错误,

    ,反之也成立,故B正确,

    ,反之也成立,故C错误,

    ,反之也成立,故D正确.

    故选:BD

    11.命题为真命题的一个充分不必要条件是(    

    A B C D

    【答案】CD

    【分析】根据已知条件,将原题转化为函数恒成立问题,结合参变量分离法求出的取值范围,再利用集合的包含关系判断可得出合适的选项.

    【详解】若命题为真命题,则

    所以,命题为真命题的一个充分不必要条件是

    故选:CD.

    12.下列命题为真命题的是(    

    A.设,则的既不充分也不必要条件

    B二次方程有一正根一负根的充要条件

    C的充分不必要条件

    D的必要不充分条件

    【答案】BCD

    【分析】A选项:根据,由此即可判断;

    B选项:根据方程有两个异号根的充要条件即可判断;

    C选项:根据,由此即可判断;

    D选项:解不等式,根据解集即可判断求解.

    【详解】,故,但

    的必要不充分条件,故A错误;

    若二次方程有一正根一负根,则满足,解得:

    所以二次方程有一正根一负根的充要条件,故B正确;

    可得,故,但

    所以的充分不必要条件,故C正确;

    解不等式可得,但

    所以的必要不充分条件,故D正确;

    故选:BCD

     

    三、填空题

    13.若A=B=,则=____________

    【答案】

    【分析】由集合中的条件组成方程组求解可得.

    【详解】代入,得,解得,则

    所以.

    故答案为:

    14.若,则的取值集合是 __

    【答案】

    【分析】利用不等式的基本性质可求得的取值范围.

    【详解】因为,所以,故.

    故答案为:.

    15.已知集合有且只有两个子集,则实数________.

    【答案】

    【分析】根据题设条件可得为单元素集合,就分类讨论后可得实数的值.

    【详解】因为有且只有两个子集,故为单元素集合.

    时,,符合;

    时,则有.

    综上,.

    故答案为:.

    【点睛】本题考查集合中元素个数与其子集个数之间的关系以及集合含义的正确理解,一般地,如果有限集中元素的个数为,那么其子集的个数为,对于集合,它表示方程的解的集合,讨论含参数的方程的解的时,要考虑二次项系数是否为零.

    16.设A,B是非空集合,定义.已知集合 ,则AB=________.

    【答案】{0}∪ [2,+∞)

    【详解】由已知A{x|0<x<2}B{y|y0},又由新定义AB{x|x(AB)x(AB),结合数轴得AB{0}[2,+∞)

     

    四、解答题

    17.已知集合,求

    【答案】

    【分析】可求出集合,然后进行交集、并集和补集的运算即可

    【详解】

    ,有,

    18.已知关于的不等式的解集是

    (1),求解集

    (2),解关于的不等式

    【答案】(1)

    (2)

     

    【分析】1)把代入,解二次不等式可求

    2)由二次不等式的解集与二次方程的根的关系可先求出,然后解分式不等式即可求解.

    【详解】1)若,解得

    2)因为不等式的解集

    所以的一个解为

    所以,解得

    不等式

    等价于,解得

    故不等式的解集为

    19.在②“的充分不必要条件;,这三个条件中任选一个,补充到下列问题的横线处,并解答该题.

    问题;已知集合,若_____,求实数的取值范围.

    注;如果选择多个条件分别解答,按第一个解答计分.

    【答案】答案不唯一,具体见解析

    【分析】选择:由可得,然后根据集合的包含关系讨论两种情况,建立不等式即可求解;

    选择的充分不必要条件,则集合是集合的真子集,后根据集合的包含关系讨论两种情况,建立不等式即可求解;

    选择,讨论两种情况,建立不等式即可求解.

    【详解】若选择:由可得

    时,,解得满足题意;

    时,只需,解得

    综上,实数的取值范围为

    若选择的充分不必要条件,则集合是集合的真子集,

    因为

    时,,解得满足题意,

    时,只需,解得

    时,

    时,,均符合题意,

    综上,实数的取值范围为

    若选择

    因为

    时,,解得满足题意,

    时,则,即,只需,解得

    此时.

    综上,实数的取值范围为

    20.已知命题:存在实数,使得方程成立,命题,若命题和命题都是真命题,求实数的取值范围.

    【答案】.

    【分析】根据已知条件,分别求出命题和命题都是真命题时,的取值范围,并取其交集,即可求解.

    【详解】①∵是真命题,所以命题p是假命题,方程无实数解,

    ,解得.

    若命题为真命题,

    时,恒成立,符合题意,

    时,需满足,且,解得

    所以.

    综上所述,的取值范围为

    21.设,解关于的不等式

    【答案】答案不唯一,具体见解析

    【分析】讨论时,不等式的解集情况,再分,求出不等式的解集即可.

    【详解】解:时,原不等式为,解得

    时,原不等式为

    i)当时,,解不等式可得

    ii)当时,原不等式即为,解得

    iii)当时,,解不等式可得

    iv)当时,,解不等式可得.

    综上所述,当时,原不等式的解集为

    时,原不等式的解集为

    时,原不等式的解集为

    时,原不等式的解集为

    时,原不等式的解集为.

    22.已知集合,命题,命题,若的必要条件,求实数的取值范围.

    【答案】

    【分析】由已知可得,然后求出集合中的方程的两根,比较两根的大小,求出集合,然后根据子集的定义建立不等式关系,进而可以求解.

    【详解】解:集合

    因为命题的必要条件,所以

    又方程的两根分别为

    所以,当,即时,,符合题意;

    ,即时,,只需,解得

    ,即时,,只需,解得

    综上,的取值范围为

     

    相关试卷

    江苏省南京市建邺区河西外国语学校2020-2021学年高一上学期10月月考数学试卷 Word版含解析: 这是一份江苏省南京市建邺区河西外国语学校2020-2021学年高一上学期10月月考数学试卷 Word版含解析,共14页。试卷主要包含了单项选择题,多项选择,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省南京市高一上学期期末数学试题(解析版): 这是一份2022-2023学年江苏省南京市高一上学期期末数学试题(解析版),共14页。试卷主要包含了单选题,多选题,填空题,双空题,解答题等内容,欢迎下载使用。

    2022-2023学年江苏省南京市金陵中学高一上学期期中数学试题(解析版): 这是一份2022-2023学年江苏省南京市金陵中学高一上学期期中数学试题(解析版),共13页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map