|试卷下载
搜索
    上传资料 赚现金
    2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题(解析版)
    立即下载
    加入资料篮
    2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题(解析版)01
    2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题(解析版)02
    2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题(解析版)03
    还剩9页未读, 继续阅读
    下载需要10学贝 1学贝=0.1元
    使用下载券免费下载
    加入资料篮
    立即下载

    2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题(解析版)

    展开
    这是一份2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题(解析版),共12页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年湖南省永州市祁阳县第四中学高一上学期期中数学试题

     

    一、单选题

    1.若集合M{11}N{210},则MN=(    

    A{0,-1} B{1} C{0} D{11}

    【答案】B

    【分析】利用集合之间的交集运算即得结果.

    【详解】因为集合M{11}N{210},所以MN{1}.

    故选:B.

    【点睛】本题考查了集合之间的交集运算,属于简单题.

    2.命题的否定是(    

    A B

    C D

    【答案】D

    【分析】由全称命题的否定即可判断.

    【详解】由题可知:

    命题的否定为:.

    故选:D

    3.下列四个条件中,使成立的必要不充分条件是(    

    A B C D

    【答案】A

    【解析】由充分条件、必要条件的定义,逐项判断即可得解.

    【详解】对于A,由可推出,但由推不出

    所以成立的必要不充分条件,故A正确;

    对于B,由不能推出,由可推出

    所以成立的充分不必要条件,故B错误;

    对于C,由推不出,由也推不出

    所以成立的既不充分也不必要条件,故C错误;

    对于D,由推不出,由也推不出

    所以成立的既不充分也不必要条件,故D错误.

    故选:A.

    【点睛】本题考查了必要不充分条件的判定,考查了逻辑推理能力,属于基础题.

    4.已知函数,则    

    A B C D

    【答案】B

    【解析】利用解析式分别求得,从而得到结果.

    【详解】.

    故选:.

    【点睛】本题考查利用分段函数解析式求解函数值的问题,解题关键是能够将自变量代入对应的解析式中,属于基础题.

    5.已知,则由的值构成的集合是(    

    A B C D

    【答案】D

    【分析】讨论,求出,再带入集合看是否满足互异性即可.

    【详解】解:

    ,即时,,集合中有相同元素,舍去;

    ,即(舍)或时,,符合,

    故由的值构成的集合是.

    故选:D

    【点睛】本题考查元素与集合的关系,以及集合元素的互异性,注意带入验证,是基础题.

    6.已知不等式的解集是,则不等式的解集是(    

    A B C D

    【答案】A

    【分析】根据不等式的解集可得不等式对应的方程的解,从而可求出的值,故不等式即为,从而可求其解,从而得到正确的选项.

    【详解】不等式的解集是

    是方程的两根,

    ,解得.

    不等式

    解得

    不等式的解集为.

    故选:A.

    【点睛】本题考查一元二次不等式的解、三个二次的关系,这个关系是:不等式对应的解的端点是对应方程的根,是二次函数的图像与轴交点的横坐标.本题属于基础题.

    7.已知,函数,若的最大值为M,最小值为N,则    

    A0 B2 C D1

    【答案】B

    【分析】根据构造函数为奇函数,得到与的关系即可求得结果.

    【详解】设函数

    ,故为奇函数,

    上的最大值与最小值之和为0

    故选:B

    8.我们从这个商标中抽象出一个图象如图,其对应的函数可能是  

    A B

    C D

    【答案】D

    【分析】直接利用排除法和函数的单调性,对称性及函数的定义域的应用求出结果.

    【详解】根据函数的图象,对于选项:当时,,所以与图象相矛盾,故舍去;

    对于选项:时,函数1与函数在时,为函数的图象的渐近线相矛盾故舍去;

    对于选项:由于函数的图象的渐近线为,而原图象中的渐近线为,所以与原图相矛盾,故舍去.

    对于选项:函数的图象的渐近线为,且单调性与原图象相符,

    故选:

    【点睛】本题考查的知识要点:函数的图象的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.

     

    二、多选题

    9,则m可能的取值为(    

    A0 B C D

    【答案】ABC

    【分析】由题可得,然后讨论集合B是否为空集,求解即得.

    【详解】

    所以

    时,,满足

    时,,又

    所以

    综上,实数m的值可以为0.

    故选:ABC

    10.下列各选项给出的两个函数中,表示相同函数的有(    

    A B

    C D

    【答案】BC

    【解析】分别求出四个答案中两个函数的定义域和对应法则是否一致,若定义域和对应法则都一致即是相同函数.

    【详解】对于,两个函数的对应法则不一致,所以不是相同函数,故选项不正确;

    对于定义域和对应关系都相同,所以是相同函数,故选项正确;

    对于定义域都是,所以两个函数是相同函数,故选项正确

    对于定义域是定义域是,两个函数定义域不同,所以不是相等函数,故故选项不正确;

    故选:

    【点睛】本题主要考查了判断两个函数是否为相同函数,判断的依据是两个函数的定义域和对应法则是否一致,属于基础题.

    11.已知函数,下列说法正确的是(    

    A.函数是偶函数 B.函数是非奇非偶函数

    C.函数有最大值是4 D.函数的单调增区间是为(02)

    【答案】BD

    【解析】利用函数奇偶性的定义判断AB,根据函数的图像和性质判断CD

    【详解】解:由于函数的定义域为,定义域不关于原点对称,

    所以此函数为非奇非偶函数,无最大值,所以A,C错误,B正确,

    的图像和性质可知,其,所以D正确,

    故选:BD

    12.定义在上的函数满足,当时,,则满足(    

    A B是奇函数

    C上有最大值 D的解集为

    【答案】ABD

    【分析】利用赋值法可判断A选项的正误;利用函数奇偶性的定义可判断B选项的正误;利用函数单调性的定义可判断C选项的正误;利用函数的单调性解不等式,可判断D选项的正误.

    【详解】对于A选项,令,可得,解得A对;

    对于B选项,函数的定义域为

    ,可得,则

    故函数是奇函数,B对;

    对于C选项,任取,则

    ,所以

    所以,函数上的减函数,

    所以,上有最大值C错;

    对于D选项,由于上的减函数,由,可得,解得D.

    故选:ABD.

     

    三、填空题

    13.函数的定义域为_____________.

    【答案】

    【分析】根据偶次根式和分式有意义的要求可得不等式组,解不等式组可求得结果.

    【详解】由题意得:,解得:,即的定义域为.

    故答案为:.

    14.设a0.60.6b0.61.5c1.50.6,则abc的大小关系是____.

    【答案】

    【解析】直接利用指数函数和幂函数的单调性,可判断三个数的大小.

    【详解】函数为减函数;

    函数上为增函数;

    故答案为:.

    15.若二次函数满足,且图象过原点,则的解析式为__________________.

    【答案】

    【分析】利用待定系数法,可得结果.

    【详解】,由题可知

    所以,则

    故答案为:

    【点睛】本题考查函数的解析式的求法,对这种题型,要熟悉基本方法,比如:待定系数法,换元法,方程组法等,属基础题.

    16.已知偶函数在区间上单调递增,则满足x取值范围______

    【答案】

    【分析】因为函数为偶函数,所以,又在区间上单调递增,所以在区间上单调递减,从而不等式可解.

    【详解】函数为偶函数,

    等价于

    在区间上单调递增,

    函数在区间上单调递减,

    于是有:

    ,即

    故答案为:

     

    四、解答题

    17.化简求值:

    (1)

    (2)

    【答案】(1)

    (2)

     

    【分析】1)将根式化为分数指数幂,再根据幂的运算法则计算可得;

    2)根据幂的运算法则计算可得.

    【详解】1)解:

    2)解:

      

      

    18.已知集合.

    1)若,求

    2)若的必要不充分条件,求m的取值范围.

    【答案】12

    【分析】1)根据集合的交集、补集运算即可求解;

    2)由题意知,结合数轴建立不等式求解即可.

    【详解】1时,

    2)因为的必要不充分条件,

    所以

    解得

    m的取值范围为

    【点睛】本题主要考查了集合的交集、补集运算,集合的真子集,必要不充分条件,属于中档题.

    19.已知函数.

    1)判断该函数在区间上的单调性,并给予证明;

    2)求该函数在区间上的最大值与最小值.

    【答案】1在区间上是减函数;证明见解析;(2.

    【分析】1)直接利用函数的单调性的定义证明即可;

    2)利用函数的单调性,直接求解函数的最值即可.

    【详解】解:(1在区间上是减函数.(导数法也可以)

    证明任意取

    .

    .

    .

    .

    在区间上是减函数.

    2)由(1)可知在区间上是递减的,故对任意的均有

    .

    【点睛】本题考查函数的单调性以及函数的最值的求法,考查计算能力,中档题.

    20.(1)已知,求的最小值;

    2)已知,且,求的最小值.

    【答案】1;(2.

    【分析】1)由,利用基本不等式直接求得结果;

    2)根据配凑出符合基本不等式的形式,利用基本不等式可求得结果.

    【详解】1(当且仅当,即时取等号),

    的最小值为

    2(当且仅当,即时取等号),

    的最小值为.

    21.已知函数

    (1)是奇函数,求的值;

    (2)上恒成立,求的取值范围.

    【答案】(1)

    (2)

     

    【分析】1)由奇函数的性质得到,即可求得的值,再检验即可;

    2)设,则,由函数的单调性求得函数的最小值,即可求出参数的取值范围.

    【详解】1)解:的定义域为且是奇函数,  

    ,即,解得

    此时,则,符合题意.

    2)解:上恒成立,

    ,因为,所以

    所以

    因为 单调递增,

    所以 

     

    ,解得

    所以的取值范围是

    22.已知二次函数)满足,且.

    (1)求函数的解析式;

    (2) 求函数∈[0,2]上的最小值.

    【答案】1,(2

    【详解】试题分析:1)据二次函数的形式设出fx)的解析式,将已知条件代入,列出方程,令方程两边的对应系数相等解得.

    2)函数gx)的图象是开口朝上,且以x=m为对称轴的抛物线,分当m≤0时,当0m2时,当m≥2时三种情况分别求出函数的最小值,可得答案.

    试题解析:

    1)设二次函数一般式),代入条件化简,根据恒等条件得,解得,再根据,求.2根据二次函数对称轴必在定义区间外得实数的取值范围;根据对称轴与定义区间位置关系,分三种情况讨论函数最小值取法.

    试题解析:

    1)设二次函数),

    .

    2①∵

    .

    上是单调函数,对称轴在区间的左侧或右侧,

    ,对称轴

    时,

    时,

    时,

    综上所述,

     

    相关试卷

    2022-2023学年湖南省永州市祁阳县第四中学高二下学期第一次阶段考试数学试题含解析: 这是一份2022-2023学年湖南省永州市祁阳县第四中学高二下学期第一次阶段考试数学试题含解析,共15页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    2022-2023学年湖南省永州市高一上学期期末数学试题含解析: 这是一份2022-2023学年湖南省永州市高一上学期期末数学试题含解析,共24页。试卷主要包含了考试结束后,只交答题卡, 已知命题, 已知,,,则, 函数的图象可能是, 已知,下列命题正确的是, 关于函数,下列说法正确的是等内容,欢迎下载使用。

    2022-2023学年湖南省长沙市长郡中学高一上学期期中数学试题(解析版): 这是一份2022-2023学年湖南省长沙市长郡中学高一上学期期中数学试题(解析版),共16页。试卷主要包含了单选题,多选题,填空题,解答题等内容,欢迎下载使用。

    免费资料下载额度不足,请先充值

    每充值一元即可获得5份免费资料下载额度

    今日免费资料下载份数已用完,请明天再来。

    充值学贝或者加入云校通,全网资料任意下。

    提示

    您所在的“深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载 10 份资料 (今日还可下载 0 份),请取消部分资料后重试或选择从个人账户扣费下载。

    您所在的“深深圳市第一中学”云校通为试用账号,试用账号每位老师每日最多可下载10份资料,您的当日额度已用完,请明天再来,或选择从个人账户扣费下载。

    您所在的“深圳市第一中学”云校通余额已不足,请提醒校管理员续费或选择从个人账户扣费下载。

    重新选择
    明天再来
    个人账户下载
    下载确认
    您当前为教习网VIP用户,下载已享8.5折优惠
    您当前为云校通用户,下载免费
    下载需要:
    本次下载:免费
    账户余额:0 学贝
    首次下载后60天内可免费重复下载
    立即下载
    即将下载:资料
    资料售价:学贝 账户剩余:学贝
    选择教习网的4大理由
    • 更专业
      地区版本全覆盖, 同步最新教材, 公开课⾸选;1200+名校合作, 5600+⼀线名师供稿
    • 更丰富
      涵盖课件/教案/试卷/素材等各种教学资源;900万+优选资源 ⽇更新5000+
    • 更便捷
      课件/教案/试卷配套, 打包下载;手机/电脑随时随地浏览;⽆⽔印, 下载即可⽤
    • 真低价
      超⾼性价⽐, 让优质资源普惠更多师⽣
    VIP权益介绍
    • 充值学贝下载 本单免费 90%的用户选择
    • 扫码直接下载
    元开通VIP,立享充值加送10%学贝及全站85折下载
    您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      充值到账1学贝=0.1元
      0学贝
      本次充值学贝
      0学贝
      VIP充值赠送
      0学贝
      下载消耗
      0学贝
      资料原价
      100学贝
      VIP下载优惠
      0学贝
      0学贝
      下载后剩余学贝永久有效
      0学贝
      • 微信
      • 支付宝
      支付:¥
      元开通VIP,立享充值加送10%学贝及全站85折下载
      您当前为VIP用户,已享全站下载85折优惠,充值学贝可获10%赠送
      扫码支付0直接下载
      • 微信
      • 支付宝
      微信扫码支付
      充值学贝下载,立省60% 充值学贝下载,本次下载免费
        下载成功

        Ctrl + Shift + J 查看文件保存位置

        若下载不成功,可重新下载,或查看 资料下载帮助

        本资源来自成套资源

        更多精品资料

        正在打包资料,请稍候…

        预计需要约10秒钟,请勿关闭页面

        服务器繁忙,打包失败

        请联系右侧的在线客服解决

        单次下载文件已超2GB,请分批下载

        请单份下载或分批下载

        支付后60天内可免费重复下载

        我知道了
        正在提交订单

        欢迎来到教习网

        • 900万优选资源,让备课更轻松
        • 600万优选试题,支持自由组卷
        • 高质量可编辑,日均更新2000+
        • 百万教师选择,专业更值得信赖
        微信扫码注册
        qrcode
        二维码已过期
        刷新

        微信扫码,快速注册

        还可免费领教师专享福利「樊登读书VIP」

        手机号注册
        手机号码

        手机号格式错误

        手机验证码 获取验证码

        手机验证码已经成功发送,5分钟内有效

        设置密码

        6-20个字符,数字、字母或符号

        注册即视为同意教习网「注册协议」「隐私条款」
        QQ注册
        手机号注册
        微信注册

        注册成功

        下载确认

        下载需要:0 张下载券

        账户可用:0 张下载券

        立即下载
        账户可用下载券不足,请取消部分资料或者使用学贝继续下载 学贝支付

        如何免费获得下载券?

        加入教习网教师福利群,群内会不定期免费赠送下载券及各种教学资源, 立即入群

        返回
        顶部
        Baidu
        map