必修 第一册5.1 函数的概念和图象教案设计
展开函数的概念和图像
【教学目标】
(1)通过丰富实例,学习用集合与对应的语言来刻画函数,体会对应关系在刻画函数概念中的作用;
(2)了解构成函数的三要素;
(3)能够正确使用“区间”的符号表示某些集合。
【教学重点】
理解函数的模型化思想,用集合与对应的语言来刻画函数。
【教学难点】
理解函数的模型化思想,用集合与对应的语言来刻画函数。
【授课类型】
新授课
【教学过程】
【第一课时】
一、问题链接:
1.讨论:放学后骑自行车回家,在此实例中存在哪些变量?变量之间有什么关系?
2.回顾初中函数的定义:
在一个变化过程中,有两个变量x和y,对于x的每一个确定的值,y都有唯一的值与之对应,此时y是x的函数,x是自变量,y是因变量。
表示方法有:解析法、列表法、图象法。
二、合作探究展示:
探究一:函数的概念:
思考1:给出三个实例:
A.一枚炮弹发射,经26秒后落地击中目标,射高为845米,且炮弹距地面高度h(米)与时间t(秒)的变化规律是。
B.近几十年,大气层中臭氧迅速减少,因而出现臭氧层空洞问题,图中曲线是南极上空臭氧层空洞面积的变化情况。(见课本P15图)
C.国际上常用恩格尔系数(食物支出金额÷总支出金额)反映一个国家人民生活质量的高低。“八五”计划以来我们城镇居民的恩格尔系数如下表。(见课本P16表)
讨论:以上三个实例存在哪些变量?变量的变化范围分别是什么?两个变量之间存在着怎样的对应关系? 三个实例有什么共同点?
归纳:三个实例变量之间的关系都可以描述为:对于数集A中的每一个x,按照某种对应关系f,在数集B中都与唯一确定的y和它对应,记作:
函数的定义:
设A、B是两个非空的数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数和它对应,那么称为从集合A到集合B的一个函数(function),记作:
其中,x叫自变量,x的取值范围A叫作定义域(domain),与x的值对应的y值叫函数值,函数值的集合叫值域(range)。显然,值域是集合B的子集。
注意:
① “y=f(x)”是函数符号,可以用任意的字母表示,如“y=g(x)”;
②函数符号“y=f(x)”中的f(x)表示与x对应的函数值,一个数,而不是f乘x。
思考2:构成函数的三要素是什么?
答:定义域、对应关系和值域
小试牛刀。1下列四个图象中,不是函数图象的是( B )。
2.集合,,给出下列四个图形,其中能表示以M为定义域,N为值域的函数关系的是( B )。
归纳:(1)一次函数y=ax+b (a≠0)的定义域是R,值域也是R;
(2)二次函数 (a≠0)的定义域是R,值域是B;当a>0时,值域;当a﹤0时,值域。
(3)反比例函数的定义域是,值域是。
探究二:区间及写法:
设A、B是两个实数,且a<b,则:
满足不等式的实数x的集合叫做闭区间,表示为[a,b];
满足不等式的实数x的集合叫做开区间,表示为(a,b);
满足不等式的实数x的集合叫做半开半闭区间,表示为;
这里的实数a和b都叫做相应区间的端点。(数轴表示见课本P17表格)
符号“∞”读“无穷大”;“-∞”读“负无穷大”;“+∞”读“正无穷大”。我们把满足的实数x的集合分别表示为
。
小试牛刀:
用区间表示R、{x|x≥1}、{x|x>5}、{x|x≤-1}、{x|x<0}
(学生做,教师订正)
三、例题讲解:
例1.已知函数,
求的值;
当a>0时,求的值。
四、随堂检测:
1. 用区间表示下列集合:
2.已知函数f(x)=3x+5x-2,求f(3)、f(-)、f(A)、f(a+1)的值;
3.课本练习2.
4.已知=+x+1,则=__3+____;f[]=_57_____。
5.已知,则= —1。
归纳小结:
函数模型应用思想;函数概念;二次函数的值域;区间表示
【作业布置】
数学5.1 函数的概念和图象教案: 这是一份数学5.1 函数的概念和图象教案,共3页。教案主要包含了教学目标,教学重点,教学难点,教学过程,作业布置等内容,欢迎下载使用。
高中数学苏教版 (2019)必修 第一册5.1 函数的概念和图象教学设计: 这是一份高中数学苏教版 (2019)必修 第一册5.1 函数的概念和图象教学设计,共2页。教案主要包含了教学目标,教学重难点,教学准备,教学过程,教学反思等内容,欢迎下载使用。
苏教版 (2019)必修 第一册第5章 函数概念与性质5.1 函数的概念和图象教案: 这是一份苏教版 (2019)必修 第一册第5章 函数概念与性质5.1 函数的概念和图象教案,共4页。教案主要包含了教学目标,教学重点,教学难点,授课类型,教学过程,第二课时,作业布置等内容,欢迎下载使用。